摘要:
Oscillation/rotation patterns for improving the off-axis homogeneity of fused silica boules are provided. The patterns reduce the optical effects of periodic off-axis striae by decreasing the ratio of .DELTA.n.sub.striae to .DELTA.z.sub.striae, where .DELTA.n.sub.striae is the average peak-to-valley magnitude of the striae and .DELTA.z.sub.striae is their average peak-to-peak period. The oscillation/rotation patterns have long repeat periods and cause soot-producing burners to trace out substantially spiral-shaped patterns on the surface of the boule.
摘要:
A layer of quartz glass soot is deposited continuously on a substrate consisting of quartz glass grains with a lower degree of sintering activity than the quartz glass soot and the soot is sintered by passing it continuously through a heating zone to form a quartz glass strip which is severed to form plates. Apparatus for implementing the process includes a conveyor suitable for the transport of quartz glass grains; a loading device for the deposition of the quartz glass grains onto the conveyor; nozzles for depositing a layer of synthetic quartz glass soot on the quartz glass grains; and a heating unit to heat the layer.
摘要:
A plurality of optical waveguide preforms are simultaneously formed by depositing on a plurality of starting members layers of glass soot to build up a coating on each starting member. The soot layers are deposited by traversing a series of burners along the starting members in such a manner that a given one of the burners traverses the first starting member from a first end thereof to a second end thereof to form a layer of soot thereon. The remaining burners of the series similarly traverses the first starting member, a plurality of burners traversing the first starting member at any given time. After the first burner has traversed the first starting member it similarly traverses the second starting member. After the last of the series of burners has begun its traverse along the first starting member, the first of the series of burners completes its traverse of the second starting member and again begins traversing the first starting member immediately following the last of the series of burners.
摘要:
A method of producing a highly pure glass tube having a smooth inner surface, said method comprising the steps ofdepositing by the flame hydrolysis of a glass-forming raw material, a first layer of glass soot particles having a bulk density no greater than 0.2 g/cm.sup.3 on a seed member having a smooth and clean outer surface,depositing on the surface of the first layer of glass soot particles, a second layer of glass soot particles having a bulk density greater than that of the first layer by at least 0.03 g/cm.sup.3,drawing the seed member from the deposited two-layered glass soot preform to form a tube of glass soot particles,removing the first inner layer of glass soot particles from the second layer, either simultaneously with or subsequent to the drawing of the seed member from the soot preform, andheating and vitrifying the tubular glass soot preform to form a transparent solid glass tube.
摘要:
Provided is an optical fiber base material manufacturing method that includes, while rotating a starting member formed by fusing both ends of a core rod to dummy rods on an axis of the starting member, moving the starting member and burners back and forth relative to each other and depositing glass microparticles on a surface of the starting member. This method also includes setting two or more axes as back and forth movement axes allowing for back and forth movement relative to the starting member; providing a burner facing the starting member on each of the axes; causing each burner to traverse the starting member to an end of the starting member; and changing a position where at least two burners pass by each other during the traversing movement, in a longitudinal direction of the starting member.
摘要:
A method for producing quartz glass cylinders includes producing soot bodies using depositing burners to deposit SiO2 particles for mass deposition on a rotating substrate and vitrifying the soot bodies to form quartz glass cylinders. Prior to producing the soot bodies, the following steps are carried out: producing first and second test soot bodies, determining the density distribution of the first test soot body in the axial direction; vitrifying the second test soot body to generate a test quartz glass cylinder; determining the mass distribution of the test quartz glass cylinder in the axial direction; and setting the mass deposition of SiO2 particles to be deposited as a function of the axial mass distribution of the test quartz glass cylinder. As such, the mass distribution of the produced and vitrified soot bodies is improved and/or made more homogeneous relative to the axial mass distribution of the test quartz glass cylinder.
摘要:
Methods for making a preform for a graded-index multimode fiber by using an inside deposition process are disclosed. The methods are characterized by an iterative refractive index profile correction with the following steps: determining a target refractive index profile for the preform to be produced, carrying out an inside deposition process with fixed volume flows for the reacting gases inside a tube and a given burner speed for all deposited layers, collapsing the tube and measuring the actual refractive index profile, comparing the target profile with the actual profile and calculating a correction value of index differences, converting this correction value in corrected burner speeds as varying process parameter, carrying out a inside deposition process with fixed gas flows and corrected burner speeds for all layers to be deposited.
摘要:
A method and device for manufacturing a preform for optical fibers through chemical deposition on a substrate for deposition arranged vertically is described, comprising a chemical deposition chamber including at least one gripping member rotatably mounted about an axis Z-Z and adapted to hold at least one end of at least one elongated element constituting a substrate for chemical deposition for the formation of a preform for optical fibers. The chamber includes, moreover, at least one burner which is mobile along a direction Z substantially parallel to said axis Z-Z and adapted to deposit, on said at least one elongated element, a chemical substance for the formation of a preform and at least one suction element for collecting exhaust chemical substances, said at least one suction element being arranged on the opposite side to said at least one burner with respect to said axis Z-Z and being mobile along said direction Z. Said at least one suction element is advantageously positioned at a different height (preferably lower) with respect to that of said at least one burner to optimise the fluid dynamic conditions inside the chemical deposition chamber.
摘要:
Methods for forming optical fiber preforms with low-index trenches are disclosed. According to one embodiment, the method includes depositing silica-based glass soot on a bait rod to form a low-index trench region of the optical fiber preform. The silica-based glass soot is deposited such that the low-index trench region has a first density. Thereafter a barrier layer having a second density greater than the first density is formed around the low-index trench region. Therafter, an overclad region is deposited around the barrier layer. The bait rod is then removed from a central channel of the trench-overclad assembly. A separate core assembly is inserted into the central channel. A down-dopant gas is then directed through the central channel of the trench-overclad assembly as the trench-overclad assembly is heated to dope the low-index trench region. The barrier layer prevents diffusion of the down-dopant from the low-index trench region into the overclad region.
摘要:
A manufacturing method for a porous silica body including: a step of arranging a plurality of burners around an optical fiber core rod; and a deposition step of depositing a plurality of soot layers on an outer peripheral surface of the optical fiber core rod by the burners, wherein the deposition step comprises forming each of the plurality of soot layers by one of the burners, and depositing each soot layer to satisfy 0.2≦x≦0.5 and 0.1≦y≦4.0x2−3.8x+1.3 where x (g/cm3) is the average bulk density and y (mm) is the deposition thickness, and so that the maximum value of the bulk density of the soot layers becomes 0.6 g/cm3 or less.