Abstract:
The present invention relates generally to substrates that exhibit useful, auto adaptable surface energy properties that depend on the environment of the substrate. Such surface energy properties provide relatively high advancing and receding contact angles for liquids when in contact with the target substrate surface. The substrates exhibit low surface energy quantities of at most about 20 millijoules per square meter (mJ/m2) at a temperature of about 25 degrees C. and a surface energy greater than about 20 mJ/m2 at, or with exposure to, a temperature of about 40 degrees C. More specifically, encompassed within the present invention are textile substrates having this highly desirable unique surface energy modification property and which exhibit wash durable oil and water repellency and stain release features. Novel compositions and formulations that impart such surface energy modifications to substrates are also encompassed within this invention, as well as methods for producing such treated substrates.
Abstract translation:本发明一般涉及依赖于衬底环境的有用的,自动适应的表面能特性的衬底。 当与目标基板表面接触时,这种表面能量特性为液体提供相对高的前进和后退接触角。 基材在约25℃的温度下表现出低至多约20毫焦耳/平方米(mJ / m 2)的表面能,而表面能大于约20mJ / m 2,或 暴露于约40℃的温度。更具体地,本发明中包括具有这种非常理想的独特表面能改性性能的织物基材,并且其具有耐洗涤耐油和防水性和脱色特性。 赋予基质的这种表面能改变的新型组合物和制剂也包括在本发明内,以及生产这种处理过的基材的方法。
Abstract:
The inventive method provides highly desirable hand to various different types of fabrics through the initial immobilization of individual fibers within target fabrics and subsequent treatment through abrasion, sanding, or napping of at least a portion of the target fabric. Such a procedure includes "nicking" the immobilized fibers thereby permitting the fibers to produce a substantially balanced strength of the target fabric in the fill and warp directions while also providing the same degree of hand improvements as obtained with previous methods. Furthermore, this process also provides the unexpected improvement of non-pilling to synthetic fibers as the "nicking" of the immobilized fibers results in the lack of unraveling of fibers and thus the near impossibility of such fibers balling together to form unwanted pills on the fabric surface. Fabrics treated by this process are also contemplated within this invention.
Abstract:
Described herein are spun yarns, core spun yarns, and fabrics such as denim fabrics made thereof that contain recycled cotton fibers and recycled para-aramid fibers. The combination of fibers in the yarns and fabrics provide desirable properties such as increased tear strength, breaking strength, and abrasion resistance compared to yarns and fabrics made of 100 wt % cotton.
Abstract:
Dyed fabric compositions have now been discovered that often have a balanced combination of desirable properties. The dyed fabric comprises one or more elastic fibers wherein the elastic fibers comprise the reaction product of at least one ethylene olefin block polymer and at least one crosslinking agent. Often the fabrics are characterized by a color change of greater than or equal to about 3.0 according to AATCC evaluation after a first wash by AATCC61-2003-2A.
Abstract:
The inventive method provides highly desirable hand to various different types of fabrics through the initial immobilization of individual fibers within target fabrics and subsequent treatment through abrasion, sanding, or napping of at least a portion of the target fabric. Such a procedure includes “nicking” the immobilized fibers thereby permitting the fibers to produce a substantially balanced strength of the target fabric in the fill and warp directions while also providing the same degree of hand improvements as obtained with previous methods. Furthermore, this process also provides the unexpected improvement of non-pilling to synthetic fibers as the “nicking” of the immobilized fibers results in the lack of unraveling of fibers and thus the near impossibility of such fibers balling together to form unwanted pills on the fabric surface. Fabrics treated by this process are also contemplated within this invention.
Abstract:
The inventive method provides highly desirable hand to various different types of fabrics through the initial immobilization of individual fibers within target fabrics and subsequent treatment through abrasion, sanding, or napping of at least a portion of the target fabric. Such a procedure includes nullnickingnull the immobilized fibers thereby permitting the fibers to produce a substantially balanced strength of the target fabric in the fill and warp directions while also providing the same degree of hand improvements as obtained with previous methods. Furthermore, this process also provides the unexpected improvement of non-pilling to synthetic fibers as the nullnickingnull of the immobilized fibers results in the lack of unraveling of fibers and thus the near impossibility of such fibers balling together to form unwanted pills on the fabric surface. Fabrics treated by this process are also contemplated within this invention.
Abstract:
The inventive method provides highly desirable hand to various different types of fabrics through the initial immobilization of individual fibers within target fabrics and subsequent treatment through abrasion, sanding, or napping of at least a portion of the target fabric. Such a procedure includes nullnickingnull the immobilized fibers thereby permitting the fibers to produce a substantially balanced strength of the target fabric in the fill and warp directions while also providing the same degree of hand improvements as obtained with previous methods. Furthermore, this process also provides the unexpected improvement of non-pilling to synthetic fibers as the nullnickingnull of the immobilized fibers results in the lack of unraveling of fibers and thus the near impossibility of such fibers balling together to form unwanted pills on the fabric surface. Fabrics treated by this process are also contemplated within this invention.
Abstract:
The inventive method provides highly desirable hand to various different types of fabrics through the initial immobilization of individual fibers within target fabrics and subsequent treatment through abrasion, sanding, or napping of at least a portion of the target fabric. Such a procedure includes “nicking” the immobilized fibers thereby permitting the fibers to produce a substantially balanced strength of the target fabric in the fill and warp directions while also providing the same degree of hand improvements as obtained with previous methods. Furthermore, this process also provides the unexpected improvement of non-pilling to synthetic fibers as the “nicking” of the immobilized fibers results in the lack of unraveling of fibers and thus the near impossibility of such fibers balling together to form unwanted pills on the fabric surface. Fabrics treated by this process are also contemplated within this invention.
Abstract:
A textile substrate for seat covers that may be woven or knit fabric, especially weft raschel fabric, or Malimo fabric contains 45 to 65% in weight of natural fibers at least 40% in weight of which is wool and 5 to 25% in weight ramie. It contains 35 to 55% in weight of synthetic fibers such as polypropylene, polyamide, polyacrylic, aramide, and especially polyester. In a woven or knit fabric the warp may consist of synthetic fiber and the weft of a mixture of wool and ramie fiber, or vice versa, or in both warp and weft threads of wool and ramie as well as threads of synthetic fiber may be used.