摘要:
A method is disclosed of using external polymeric analytical techniques to predict in-vivo polymeric performance, more particularly, viscoelastic property characterization for performance modeling of biomedical devices that incorporate a polymeric component and are load-bearing during service. Time-Temperature Superposition can be used to accelerate external testing of pertinent properties. Boltzmann's superposition provides a mathematical methodology for determining the time-dependent strain that develops in response to an imposed stress history. The modeling of the present invention provides an opportunity to describe and predict behavior of the device during in-vivo service, as well as it providing a basis for evaluating alternate “candidate” polymers for use in the construction of the device.
摘要:
This need is met by the present invention wherein structural stress in a fatigue-prone region of a structure is determined by using the nodal forces and displacement values in the fatigue-prone region, or equilibrium-equivalent simple stress states consistent with elementary structural mechanics in the fatigue-prone region. The determination is substantially independent of mesh size and is particularly well-suited for applications where S-N curves are used in weld fatigue design and evaluation, where S represents nominal stress or stress range and N represents the number of cycles to failure. The present invention is directed to structural stress analysis through various combinations of modeling, calculation, and direct measurement schemes.
摘要:
The relationship between the stress null and the strain null is firstly established in step 100 with short-term tests as a function of the temperature T. In steps 101 to 104, a Findley model is extended in such a way as to obtain a relationship between the strain null and the stress null as a function of the time t and the temperature T. The two models are combined in steps 105 and 106, so as to obtain overall a relationship between the stress null and the strain null as a function of the time t and the temperature T.
摘要:
A continuous filament is selected from among a group of appropriate types of filaments, and selection of the filament length and the filament thickness is made as well. A matrix material is selected from a group of appropriate types of matrix materials. Filaments of the selected type, length and thickness are undirectionally imbedded in the selected matrix to provide a uniaxial continuously reinforced composite. The Young's modulus, E.sub.c, and the shear modulus G.sub.c, are calculated for the composite. Mathematical formulas are provided for calculation of upper and lower bounds of transverse stiffness, B. A mathematical formula is provided for calculation of critical comprehensive stress, P.sub.c. Transverse stiffness, B, is involved as one of the factors in this formula. Either one or the other of the upper bound of B or the lower bound of B are alternatively applied in calculating P.sub.c, depending upon a consideration related to the shape of a cross section of the structural member into which the composite is to be formed. If the shape of the outline of such cross section includes at least one angular break, then the lower bound of B is applied in calculating P.sub.c. If the shape of the outline of such cross section is curvilinear in its entirety, then the upper bound of B is applied in calculating P.sub.c. A structural member subjected to load values below P.sub.c will be free from load-induced microbuckling with a high degree of certainty.
摘要:
A bending fracture limit stress is calculated for each of (bend radius at sheet thickness center of a metal sheet)/(initial sheet thickness of the metal sheet); a fracture limit curve and a fracture limit stress are calculated from work hardening characteristics; a fracture limit curve corresponding to (the metal sheet bend radius at sheet thickness center)/(the initial sheet thickness of the metal sheet) is calculated; a corresponding fracture limit stress is calculated from stress of the element subject to determination and the fracture limit curve; a risk ratio that is a ratio between the stress of the element subject to determination and the fracture limit stress is computed; and performing fracture determination for the element subject to determination based on the risk ratio.
摘要:
A method for probabilistic fatigue life prediction using nondestructive testing data considering uncertainties from nondestructive examination (NDE) data and fatigue model parameters. The method utilizes uncertainty quantification models for detection, sizing, fatigue model parameters and inputs. A probability of detection model is developed based on a log-linear model coupling an actual flaw size with a nondestructive examination (NDE) reported size. A distribution of the actual flaw size is derived for both NDE data without flaw indications and NDE data with flaw indications by using probabilistic modeling and Bayes theorem. A turbine rotor example with real world NDE inspection data is presented to demonstrate the overall methodology.
摘要:
An effective volume Vep of a member is calculated with a stress correction amount σcorr added to an effective stress (stress amplitude) σip at each position of the member so that a fatigue strength of the member varying corresponding to an average stress varying depending on the position of the member is apparently constant at a value when the average stress on the member is 0 (zero) irrespective of the position of the member, and a cumulative fracture probability Pfp due to fatigue of the member is derived using the effective volume Vep of the member.
摘要:
A fatigue life estimating method for a spot welded structure is provided comprising the steps of providing a shell model of a spot welded structure for a finite element method analyzing process, calculating the nominal structural stress on a nugget as the center of the spot welded structure using a disk bending theory and a two-dimensional elastic theory of the elastodynamics with the partial loads exerted on the nugget and the deflection on the circumference of a circle, D in diameter, in which the nugget is located, which have been calculated by the finite element method analyzing process of the shell model, and estimating the fatigue life of the spot welded structure from the nominal structure stress. According to the method, the fatigue life of the spot welded structure can be estimated easily, readily, and accurately.
摘要:
There is a method for modeling the surface fatigue life of a mechanical component. The method has the following steps: a) modeling the surface fatigue life of the mechanical component on an atomistic scale to form an atomistic model, b) modeling the surface fatigue life of the mechanical component on a mesoscale to form a mesoscale model, c) modeling the surface fatigue life of the mechanical component on a macroscale to form a macroscale model, and d) testing the surface fatigue life of the mechanical component. Feedback from the macroscale model is employed at least once to validate the atomistic model. Feedback from the macroscale model is employed at least once to validate the mesoscale model. Feedback from the testing is employed at least once to validate the macroscale model. There is also an interactive, multiscale model for prediction surface fatigue life or degradation rate for a mechanical component.
摘要:
A fatigue life estimating method for a spot welded structure is provided comprising the steps of providing a shell model of a spot welded structure for a finite element method analyzing process, calculating the nominal structural stress on a nugget as the center of the spot welded structure using a disk bending theory and a two-dimensional elastic theory of the elastodynamics with the partial loads exerted on the nugget and the deflection on the circumference of a circle, D in diameter, in which the nugget is located, which have been calculated by the finite element method analyzing process of the shell model, and estimating the fatigue life of the spot welded structure from the nominal structure stress.According to the method, the fatigue life of the spot welded structure can be estimated easily, readily, and accurately.