摘要:
A method for estimating life of a component includes obtaining fracture data corresponding to a component. The fracture data includes a first dataset corresponding to a threshold region where the crack in the component is dormant below a fatigue threshold. The method further includes determining initial estimates of parameters of a crack growth rate model and parameters of temperature models corresponding to the crack growth rate model based on the fracture data. The method also includes computing optimized parameters of temperature models corresponding to the crack growth rate model, and a scatter parameter via simulation of a joint optimization method using the initial estimates. The method includes determining a cumulative distribution function based on the optimized parameters and the scatter parameter and estimating life of the component based on the cumulative distribution function.
摘要:
A method of brazing including melting a surface region (26) of a substrate (12, 14, 22) and contacting a braze material (10) with the melted surface region, the braze material including a plurality of braze fillers (16) and a plurality of carbon structures (18). The method further includes subjecting the braze material to an amount of energy effective to melt the braze fillers but not the carbon structures, and cooling the braze material to form a brazement (28, 32) including the carbon structures within at least a portion of the substrate. The brazement includes a gradient (30) of the carbon structures, wherein a concentration of the carbon structures increases in a direction away from an interior of the substrate.
摘要:
A method for estimating life of a component includes obtaining fracture data corresponding to a component. The fracture data includes a first dataset corresponding to a threshold region where the crack in the component is dormant below a fatigue threshold. The method further includes determining initial estimates of parameters of a crack growth rate model and parameters of temperature models corresponding to the crack growth rate model based on the fracture data. The method also includes computing optimized parameters of temperature models corresponding to the crack growth rate model, and a scatter parameter via simulation of a joint optimization method using the initial estimates. The method includes determining a cumulative distribution function based on the optimized parameters and the scatter parameter and estimating life of the component based on the cumulative distribution function.
摘要:
A probabilistic estimation of fatigue crack life of a component is provided. A plurality of representations of the component is defined from material property scatter data and flaw-size scatter data, wherein each representation is defined by one possible material condition and flaw-size condition associated with the component. For each representation, a component location is selected and a determination is made whether said individual representation fails after a given number of cycles N, based on the calculation of a crack growth in the selected location. The crack growth is calculated on the basis of the material condition and the flaw-size condition in the selected location. Failure of the individual representation is determined if the crack growth is determined to be unstable. The sum total of the number of the representations that failed after N cycles is determined. A probability of failure of the component after N cycles is then determined.
摘要:
A method for probabilistic fatigue life prediction using nondestructive testing data considering uncertainties from nondestructive examination (NDE) data and fatigue model parameters. The method utilizes uncertainty quantification models for detection, sizing, fatigue model parameters and inputs. A probability of detection model is developed based on a log-linear model coupling an actual flaw size with a nondestructive examination (NDE) reported size. A distribution of the actual flaw size is derived for both NDE data without flaw indications and NDE data with flaw indications by using probabilistic modeling and Bayes theorem. A turbine rotor example with real world NDE inspection data is presented to demonstrate the overall methodology.
摘要:
A method for probabilistic fatigue life prediction using nondestructive testing data considering uncertainties from nondestructive examination (NDE) data and fatigue model parameters. The method utilizes uncertainty quantification models for detection, sizing, fatigue model parameters and inputs. A probability of detection model is developed based on a log-linear model coupling an actual flaw size with a nondestructive examination (NDE) reported size. A distribution of the actual flaw size is derived for both NDE data without flaw indications and NDE data with flaw indications by using probabilistic modeling and Bayes theorem. A turbine rotor example with real world NDE inspection data is presented to demonstrate the overall methodology.
摘要:
A probabilistic estimation of fatigue crack life of a component is provided. A plurality of representations of the component is defined from material property scatter data and flaw-size scatter data, wherein each representation is defined by one possible material condition and flaw-size condition associated with the component. For each representation, a component location is selected and a determination is made whether said individual representation fails after a given number of cycles N, based on the calculation of a crack growth in the selected location. The crack growth is calculated on the basis of the material condition and the flaw-size condition in the selected location. Failure of the individual representation is determined if the crack growth is determined to be unstable. The sum total of the number of the representations that failed after N cycles is determined. A probability of failure of the component after N cycles is then determined.
摘要:
A method for probabilistically predicting fatigue life in materials includes sampling a random variable for an actual equivalent initial flaw size (EIFS), generating random variables for parameters (ln C, m) of a fatigue crack growth equation a N = C ( Δ K ) m from a multivariate distribution, and solving the fatigue crack growth equation using these random variables. The reported EIFS data is obtained by ultrasonically scanning a target object, recording echo signals from the target object, and converting echo signal amplitudes to equivalent reflector sizes using previously recorded values from a scanned calibration block. The equivalent reflector sizes comprise the reported EIFS data.
摘要翻译:一种用于概率预测材料疲劳寿命的方法包括对实际等效初始缺陷尺寸(EIFS)采样随机变量,为疲劳裂纹扩展方程的参数(ln C,m)生成随机变量a N = C Delta多普勒K)m,并使用这些随机变量求解疲劳裂纹扩展方程。 报告的EIFS数据是通过超声扫描目标物体,记录来自目标物体的回波信号,并使用先前记录的来自扫描校准块的值将回波信号幅度转换为等效反射镜尺寸而获得的。 等效的反射器尺寸包括报告的EIFS数据。