摘要:
A turbine integrated within a hydrofoil extracts energy from a free-flowing motive fluid. In the preferred embodiment, the turbine is of the crossflow variety with runner blades coaxial to the width of the hydrofoil. The foremost edge of the hydrofoil comprises a slot covered by a continuously adjustable gate for controlling the overall drag imposed by the turbine. The hydrofoil mounts to a sailing vessel by means of a gimbal on a structure affixed to the hull, enabling the turbine to optimally respond to changes in direction of the free-flowing motive fluid and facilitating guidance and stability of the vessel. Both axes of the gimbal have a combination of auxiliary generator and motor with a locking mechanism. Engaging the motor and locking mechanism controls the guidance and stability of the overall vessel, and the pitch of the hydrofoil. Disengaging the locking mechanism and motor permits any change in direction of the motive fluid to affect the gimbal thereby extracting energy via the auxiliary generators. To further control drag and output power over a range of flow velocities, the preferred turbine comprises a DC generator with voltage feedback controlling field excitation, coupled to a voltage and current regulating circuit that performs electrolysis of water to produce hydrogen fuel. The hydrogen fuel tank also functions as the vessel's ballast having adjustable draft depending upon its fullness. Integrated remote control simultaneously optimizes vessel guidance, velocity, drag, stability, ballast depth, and electrolysis processes.
摘要:
A vehicle traveling through an environmental media such as air experiences drag. The drag is actively modulated by energy beams which may either increase or decrease the drag. The energy beams may provide either a chemical, acoustic or electromagnetic energy at a transition region between turbulent and laminar flows or at the leading edge of a laminar flow or in the direction of a crosswind in order to facilitate the respective increase or decrease in drag. If the vehicle is a sailing ship, areas of the sails are selectively roughened or widened to enhance the thrust derived from the wind. Furthermore, the keel or hull of the sailing ship may be modified to improve the hydrodynamic characteristics of the sailing ship. If the vehicle is an automobile, the tires or road surface may be selectively heated to improve the traction of the automobile. Furthermore, the energy beams may be used to facilitate atomization of the air/fuel mixture prior to combustion in an internal combustion engine thereby improving the thrust of provided to the vehicle. Energy beams may be used to generate virtual extensions of a vehicle to enhance traveling efficiency.
摘要:
A submersible vessel having wing and keel assemblies that are extendable for wind-powered surface operation and retractable to reduce drag for submerged operation or to place the vessel in a more compact configuration. A deployment mechanism including an actuator and linkage pivots the wing and keel assemblies-simultaneously between the deployed and retracted configuration. The vessel may have first and second pressure hulls flanking the wing and keel assemblies. A drive mechanism including a motor and a gear train employing pulley-and-cable assemblies rotates either the wing and flap together such that the flap angle relative to the wing is constant, or to change the flap angle relative to the wing with the wing angle of incidence held constant. The invention also provides a retractable wind-powered propulsion apparatus that is mountable to the hull assembly of a submersible or non-submersible vessel.
摘要:
The present disclosure relates to a wing. More specifically, aspects of the invention relate to a variable shaped wing movable incrementally between a neutral configuration and a deformed configuration, wherein the wing takes a reflexed camber aerofoil section shape in the deformed configuration. The wing includes a first aerofoil segment and a second aerofoil segment having ends connected or fixed to one another at opposing neutral leading and trailing edges and spaced apart from one another along their lengths across a neutral mean camber line extending between the neutral leading and trailing edges to form a neutral aerofoil section of the wing. One or more actuators deform the wing between the neutral aerofoil section and a reflexed camber aerofoil section, with the first and second aerofoil segments being resilient to bias the wing towards an initial at rest aerofoil section.
摘要:
Drag experienced by a vehicle traveling through an environmental media, such as air or water, may be modified by one or more energy beams which may increase or decrease drag. Environmental media may be adjusted by microwave, chemical, ultrasonic, acoustic (including subsonic, sonic, or ultrasonic), or electromagnetic energy. One or more energy beams may be directed toward a transition region between turbulent and laminar flow, at the leading edge of a laminar flow, or in the direction of a crosswind.
摘要:
A turbine integrated within a hydrofoil extracts energy from a free-flowing motive fluid. In the preferred embodiment, the turbine is of the crossflow variety with runner blades coaxial to the width of the hydrofoil. The foremost edge of the hydrofoil comprises a slot covered by a continuously adjustable gate for controlling the overall drag imposed by the turbine. The hydrofoil mounts to a sailing vessel by means of a gimbal on a structure affixed to the hull, enabling the turbine to optimally respond to changes in direction of the free-flowing motive fluid and facilitating guidance and stability of the vessel.
摘要:
Drag experienced by a vehicle traveling through an environmental media, such as air or water, may be modified by one or more energy beams which may increase or decrease drag. Environmental media may be adjusted by microwave, chemical, ultrasonic, acoustic (including subsonic, sonic, or ultrasonic), or electromagnetic energy. One or more energy beams may be directed toward a transition region between turbulent and laminar flow, at the leading edge of a laminar flow, or in the direction of a crosswind.
摘要:
A fluid dynamic section provides one or more fixed size escapelets through a foil body to reduce the induced and interference drag caused by trailing vortices and similar wake turbulence. The escapelets, which can be provided in both aerodynamic and hydrodynamic structures, such as wings, tail sections; rotary blades, guy wire frames, wing sails, and various underwater keels and wing keels. The escapelets transfer energy from an inlet located in the high-pressure surface of the foil or foil body to an outlet located in the lower-pressure surface, allowing energy that would normally form a vortex at the tip of the foil to be redirected and dissipated in a beneficial way. As a result, drag is reduced and fuel economy is increased, while at the same time increasing the authority of ailerons and similar flight control surfaces, allowing aircraft that were not previously spin recovery rated to become spin recoverable.
摘要:
Drag experienced by a vehicle travelling through an environmental media, such as air, is actively modulated by an energy beam which may either increase or decrease the drag. The energy beam may provide either a chemical, acoustic, or electromagnetic energy at a transition region between turbulent and laminar flow or at the leading edge of a laminar flow, or in the direction of a crosswind, in order to facilitate the respective increase or decrease in drag. An energy beam may be directed in a rearwards direction, relative to a direction of travel.
摘要:
A vehicle traveling through an environmental media such as air experiences drag. The drag is actively modulated by energy beams which may either increase or decrease the drag. The energy beams may provide either a chemical, acoustic or electromagnetic energy at a transition region between turbulent and laminar flows or at the leading edge of a laminar flow or in the direction of a crosswind in order to facilitate the respective increase or decrease in drag. Where the energy beams are acoustic or ultrasonic, some or all of the beams may be used to generate an audible signal, in a directional manner, outside the vehicle.