Abstract:
A laser projection system for projecting an image on a workpiece includes a photogrammetry assembly and a laser projector, each communicating with a computer. The photogrammetry assembly includes a first camera for scanning the workpiece, and the laser projector projects a laser image to arbitrary locations. Light is conveyed from the direction of the workpiece to the photogrammetry assembly. The photogrammetry assembly signals the coordinates light conveyed toward the photogrammetry assembly to the computer with the computer being programmable for determining a geometric location of the laser image. The computer establishes a geometric correlation between the photogrammetry assembly, the laser projector, and the workpiece for realigning the laser image to a corrected geometric location relative to the workpiece.
Abstract:
Apparatus, systems, and methods are disclosed for tracking movement over the ground or other surfaces using two or more spaced apart cameras and an associated processing element to detect ground features in images from the cameras and determine tracking parameters based on the position of the detected ground features in the images.
Abstract:
Apparatus, systems, and methods are disclosed for tracking movement over the ground or other surfaces using two or more spaced apart cameras and an associated processing element to detect ground features in images from the cameras and determine tracking parameters based on the position of the detected ground features in the images.
Abstract:
This invention describes an analog system for the automation of the stereocompilation process and for producing contour maps and orthophoto maps. It employs a combination of coherent optical and electronic techniques for the correlation of stereophoto pairs and thus the computation of parallaxes in the photogrammetric sense, for the selection of specific parallaxes, and for the production of contour maps and orthophoto maps.The system in a basic form reproduces perspective contours of the imagery, and in a more complete system corrects the perspective contours into orthographic contours and orthophoto-maps.
Abstract:
The present disclosure may provide a system for positioning a target scene and/or navigating a detection equipment to the target scene. The system may obtain at least one image captured by at least one camera. The at least one image may include the target scene. The system may also determine a position of the target scene based on the at least one image. Further, the system may plan a travelling route for a detection equipment to the target scene based on the position of the target scene.
Abstract:
Apparatus, systems, and methods are disclosed for tracking movement over the ground or other surfaces using two or more spaced apart cameras and an associated processing element to detect ground features in images from the cameras and determine tracking parameters based on the position of the detected ground features in the images.
Abstract:
A method and device for displaying desired positions in a live image of a construction site. The method mat include recording at least one position-referenced image of the construction site; linking at least one desired position to the position-referenced image; storing the position-referenced image together with desired position linkage in an electronic memory; recording a live image of the construction site, in particular in the form of a video, wherein the live image and the position-referenced image at least partially represent an identical detail of the construction site; retrieving the stored position-referenced image from the memory; fitting the position-referenced image with the live image, so that the desired position linked to the position-referenced image can be overlaid in a position-faithful manner on the live image; and position-faithful display of the desired position as a graphic marking in the live image.
Abstract:
A method for detecting a displacement of a mobile platform includes acquiring a first frame and a second frame using an imaging device coupled to the mobile platform, obtaining an angle of the imaging device relative to a reference level while acquiring the first frame, and determining the displacement of the mobile platform based at least on the first frame, the second frame, and the angle of the imaging device relative to the reference level.
Abstract:
A method for detecting a displacement of a mobile platform is provided. The method includes acquiring a first frame and a second frame using an imaging device that is coupled to the mobile platform, and obtaining rotation data using an inertial measurement unit (IMU) that is coupled to the mobile platform. The method also includes calculating a translation array based on the first frame, the second frame, and the rotation data. The method further includes determining the displacement of the mobile platform based on the translation array.
Abstract:
A method for detecting a displacement of a mobile platform is provided. The method includes acquiring a first frame and a second frame using an imaging device that is coupled to the mobile platform, and obtaining rotation data using an inertial measurement unit (IMU) that is coupled to the mobile platform. The method also includes calculating a translation array based on the first frame, the second frame, and the rotation data. The method further includes determining the displacement of the mobile platform based on the translation array.