Abstract:
Each element of the display includes a first electrode disposed on a transparent, insulating substrate. A second electrode is disposed over the first electrode. An interconnect bump of photoresist is formed between the first electrode and the second electrode within one or more elements of the display to extend the second electrode away from the insulating substrate so the second electrode may be operably coupled to an interconnect substrate.
Abstract:
A method and apparatus for more precisely centering lamp leads (32, 34) uses a support mechanism (50) for radially aligning the leads. The support mechanism is a helical member having first and second helical portions (52, 54). The first helical portion has a diameter slightly less than the inner diameter of the lamp envelope to maintain a filament (30) on axis. The second helical portion has an outside diameter less than the outside diameter of the first helical portion for securing the support mechanism to a mounting mechanism (60). Here, the mounting mechanism is preferably defined by first and second flattened portions (62, 64) integrally formed on the lead that axially positions the support mechanism in place.
Abstract:
A functional laminate film protects a color conversion filter and an organic electroluminescent element from mutual contamination during manufacture and use. The functional laminate film includes a transparent base film, a coupling layer and a hard coat layer. The coupling layer is bonded to the color conversion filter to present a flat surface with substantial reduction in optical defects. The hard coat layer is hard enough to withstand the formation of the organic electroluminescent element on its upper surface. The hard coat layer also acts as a barrier to prevent chemical species from the fluorescent materials within the color conversion filter from adversely affecting the organic electroluminescent element during manufacture and operation, and vice versa. The result is an improved polychromatic electroluminescent device composed of the organic electroluminescent element, the functional laminate film and the color conversion filter. The device has a greatly improved angle of visibility, high quality output and extended usable life.
Abstract:
An improvement to the usable lifetime of a lamp includes the use of a primary filament, a backup filament, and a means to switch portions of the backup filament into the current flow path after a portion of the primary filament open circuits. Using bypass shunts, which do not become electrically conductive until a portion of the primary filament open circuits, an open circuited portion of the primary filament can be electrically replaced with an associated backup filament portion to keep the lamp lit. The shunts in one embodiment are made of oxidized wire and are wrapped around the primary and backup filaments, in a spaced-apart relation, forming filament pairs consisting of a primary filament segment and its associated backup filament segment. In another embodiment, support brackets are used to not only support the primary and backup filaments, but are also used to provide the bypass shunt function as well.
Abstract:
This application discloses an image display device. In particular, this application discloses a structure of an image display device that includes a rear member placed in the rear of a display panel and a drive circuit placed on the rear side of the rear member, in which the rear member has in a part thereof a part having a shape bent to the display panel side, the display panel and the drive circuit are connected by wiring passing through an opening that is placed adjacent to the part having the bent shape, and positional deviation of the display panel is regulated by the part having the bent shape.
Abstract:
A low-wattage fluorescent lamp is provided. The lamp has at least one mercury cold spot region effective to maintain the mercury in the lamp at less than 30° C., preferably 25° C., in an enclosed lamp fixture. The lamp also features a reduced distance between electrodes resulting in less power being required to sustain an electric arc discharge during operation of the lamp. The lower power electric arc generates less heat to raise the temperature of mercury vapor within the lamp.
Abstract:
A flat fluorescent discharge lamp is disclosed, which includes a first glass substrate having a plurality of electrodes to apply a voltage, a second glass substrate deposited with a first phosphor film on a surface opposite to the first glass substrate, a hollow spacer formed between the first and second glass substrates, having a window on at least one side, and a second phosphor film deposited on inner and outer sides of the spacer.
Abstract:
A glass spacer for an electron-beam emitting display device is composed of non alkaline glass having almost the same linear expansion coefficient as that of soda-lime-silica glass. The glass includes SiO2 with 10 to 35 percent by mass, RO, in which “R” refers to an alkaline earth metal, with 20 to 60 percent by mass, B2O3 with 9 to 30 percent by mass and Al2O3 with 0 to 10 percent by mass, and which is substantially free of alkali. The linear expansion coefficient of the glass spacer is in a range from 76×10−7/° C. to 92×10−7/° C. The glass spacer may further include La2O3 with 0 to 30 percent by mass, ZnO with 0 to 8 percent by mass and TiO2 with 0 to 5 percent by mass.
Abstract translation:用于电子束发射显示装置的玻璃间隔件由具有与钠钙石英玻璃几乎相同的线性膨胀系数的非碱性玻璃构成。 该玻璃包含10〜35质量%的SiO,其中“R”表示碱土金属,SiO 2为20〜60质量%,B 2 O 3为9〜30质量%,Al 2 O 3为0〜10质量% 质量,其基本上不含碱。 玻璃间隔物的线膨胀系数在76×10 -7 /℃至92×10 -7 /℃的范围内。玻璃间隔物还可以含有0〜30质量%的La2O3,0〜8%的ZnO, 质量和0〜5质量%的TiO 2。
Abstract:
A light source is provided that includes a reflector for generating a substantially rectangular beam. The light source may include an arc lamp that includes a magnetic field generation means in the vicinity of the arc for reducing the arc diameter, or a secondary reflection means for avoiding part of the light that is generated from being obscured by the arc lamp electrodes.
Abstract:
An EL lamp for emitting light in multiple color which includes a first light-permeable electrode layer formed at the back side of a transparent substrate, a first luminous material layer containing a first luminous material, an intermediate light-permeable electrode layer, a second luminous material layer containing a second luminous material, a back electrode, and at least two elements of (i) a first color material contained in the first luminous material layer, (ii) a second color material contained in the second luminous material layer, and (iii) luminous color converting layer containing a third color material, disposed between the first luminous material layer and second luminous material layer, and a color coat layer containing a fourth color material, disposed at the front surface side of the transparent substrate. The color material closer to the back electrode of the at least two elements has the color of longer wavelength than the remoter color material.