Abstract:
A lithographic printing plate precursor comprises: a support; and a photosensitive-thermosensitive layer that allows image recording by exposure to an infrared laser light, wherein the photosensitive-thermosensitive layer comprises (1) an infrared absorbent and (2) a compound which undergoes color change upon oxidation or reduction.
Abstract:
A printing plate material including: a plastic support; a hydrophilic layer on the plastic support; and a back layer on the plastic support, being provided on the opposite side to the hydrophilic layer, wherein the back layer includes a matting agent, and a distribution width of a projection amount of the matting agent is 1 to 20%.
Abstract:
A planographic printing method including: providing a planographic printing plate precursor including a substrate and an image recording layer which is disposed on the substrate and contains (A) an infrared absorber, (B) a polymerization initiator and (C) a polymerizable compound; imagewise exposing the planographic printing plate precursor with an infrared laser; and supplying oil-based ink and an aqueous component to the exposed planographic printing plate precursor without any development treatment, so as to print an image. A region of the planographic printing plate precursor that has not been exposed with an infrared laser is removed during the printing. The polymerizable compound of (C) is represented by the following formula (1): wherein Ar1, R1, Z and n are as defined in the claims and the specification.
Abstract:
Disclosed is a printing plate material in roll form of the on-press development type comprising a support, a functional layer including a hydrophilic layer and a thermosensitive image formation layer provided on one side of the support, and a back coat layer provided on the other side of the support, the functional layer containing first matting agents and having first protrusions formed from the first matting agents, and the back coat layer containing second matting agents and having second protrusions formed from the second matting agents, wherein an average protrusion height of the first protrusions is 0.5 to 5.0 μm higher than that of the second protrusions.
Abstract:
A lithographic printing process which comprises the steps of: imagewise exposing to infrared light a presensitized lithographic plate which comprises a hydrophilic support and a removable image-forming layer containing an infrared absorbing agent having the absorption maximum within an infrared region and a visible dye having the absorption maximum within a visible region to shift the absorption maximum of the visible dye within the exposed area with a change of at least 50 nm in the wavelength and a change of at least 15 in color in terms of ΔE, and to make the image-forming layer irremovable within the exposed area; removing the image-forming layer within the unexposed area of the lithographic plate mounted on a cylinder of a printing press; and then printing an image with the lithographic plate mounted on the cylinder of the printing press. The other processes are also disclosed.
Abstract:
A lithographic printing process comprises the steps of: imagewise exposing to infrared light a presensitized lithographic plate which comprises a hydrophilic support and an image-forming layer containing an infrared absorbing agent, a polymerization initiator and a binder polymer to polymerize the polymerizable compound within the exposed area; removing the image-forming layer within the unexposed area while mounting the lithographic plate on a cylinder of a printing press; and then printing with the lithographic plate while mounting the lithographic plate on the cylinder of the printing press. The polymerization initiator is a salt of an anion with a sulfonium ion. According to the present invention, a specific anion or a specific sulfonium ion is used in the polymerization initiator.
Abstract:
A lithographic printing plate precursor comprises: an aluminum support that has been subjected to an alkali metal silicate treatment; and an image-recording layer comprising (A) an infrared absorbent, (B) a polymerization initiator and (C) a polymerizable compound, the image-recording layer being removable with at least one of a printing ink and a fountain solution, wherein the aluminum support has a surface where the amount of the Si element attached to the surface in the alkali metal silicate treatment is 1 mg/m2 to less than 10 mg/m2.
Abstract translation:平版印刷版原版包括:已经进行碱金属硅酸盐处理的铝载体; 以及图像记录层,其包含(A)红外线吸收剂,(B)聚合引发剂和(C)可聚合化合物,所述图像记录层可用至少一种印刷油墨和润版液除去,其中 铝载体具有在碱金属硅酸盐处理中附着于表面的Si元素的量为1mg / m 2至小于10mg / m 2的表面。
Abstract:
A lithographic printing plate precursor requiring no fountain solution, comprising, in this order: a back layer containing a particle having an average particle size of 0.2 to 4.0 nullm; a support; a light-to-heat conversion layer; and a silicone rubber layer, wherein a dynamic friction coefficient between a surface of the back layer and a surface of a plate cylinder of a press on which the lithographic printing plate precursor is to be loaded is from 0.17 to 0.26.
Abstract:
A planographic printing plate precursor includes a support having disposed thereon a recording layer containing a water-insoluble and alkali-soluble resin, a development inhibitor and an infrared absorber and exhibiting enhanced solubility in an aqueous alkali solution through light exposure. The recording layer may have either a mono-layer construction or a multi-layer construction containing a lower layer and an upper layer. In the case of the multi-layer construction, a layer containing the water-insoluble and alkali-soluble resin is used as the lower layer, and a layer containing the water-insoluble and alkali-soluble resin and the development inhibitor and exhibiting enhanced solubility in an aqueous alkali solution through light exposure is used as the upper layer, and at least one of the lower layer and the upper layer contains the infrared absorber.
Abstract:
The present invention provides a polymerizable composition comprising (A) a compound including a polymerizable unsaturated group and (B) a macromolecular compound including, at a side chain thereof, a structure represented by the following general formula (I). The present invention also provides a negative type planographic printing plate precursor responsive to an infrared laser, the precursor being superior in recording sensitivity and printing durability and using the polymerizable compound as a recording layer. General Formula (I)ZnullMnullwherein Z31 represents COCOOnull, COOnull, SO3null or SO2nullNnullnullR where R represents a monovalent organic group and M30 represents an onium cation.