Abstract:
The image reading device includes a first document member, a white reference plate, an image sensor, a conveying section, and a control section. A first document is placed on the first document member. The image sensor reads the first document placed on the first document member. The conveying section conveys the image sensor in a first direction and a second direction opposite to the first direction. The image sensor reads the first document while being moved in the first direction. The control section executes a first control. The first control executes a process to control the image sensor to read the white reference plate, to control the conveying section to move the image sensor in the second direction, to control the conveying section to start moving the image sensor in the first direction, and to control the image sensor to read the first document, in this order.
Abstract:
An image reader is provided, which includes a reference position determining unit configured to, in a state where a bright area and a dark area are formed on a reflection surface when a light projecting unit projects light toward a part of the reflection surface, receive the light reflected from the reflection surface with a light receiving portion of a reading unit while restricting a light emitting portion of the reading unit from emitting light, detect a position of the bright area and a position of the dark area in a main scanning direction, and determine a reference position in the main scanning direction based on the detected positions of the bright area and the dark area.
Abstract:
An image reading apparatus comprises a feeding mechanism conveying a document, a moving mechanism moving a reading unit, a driving source shared by the mechanisms, a biasing mechanism moving the reading unit to a predetermined position by an elastic member when the reading unit is moved out of a reading region, a transmission element being displaced by the movement of the reading unit and switching transmission of the drive force, and a disengaging mechanism disengaging the reading unit in the predetermined position to the reading region from the predetermined position by the drive force of the driving source.
Abstract:
Disclosed is an image reading apparatus comprising: a movable unit having a transparent member; a guide portion arranged to face the transparent member to guide a conveyed sheet; a reader portion configured to read an image on a sheet guided by the guide portion past the transparent member; abutting portions that are provided on the guide portion and abut on the movable unit; an actuating portion configured to move the movable unit in a direction along the surface of the transparent member; and an engaging portion provided on the movable unit and engaged with the guide member such that the movable unit and the abutting portion are separated from each other as the movable unit is moved by the actuating portion.
Abstract:
An image reading unit configured to rotate and read a front and a back of a document may deviate from an original reading position due to aged deterioration or an external physical impact and become incapable of reading an image accurately. An image processing apparatus rotates an image reading unit including a sensor in units of predetermined angles to read a white reference member, acquires luminance information about the white reference member at the respective predetermined angles of rotation, determines an angle at which the luminance information is greater than other pieces of the luminance information among a plurality of pieces of the acquired luminance information at the respective predetermined angles, and rotates the image reading unit based on the determined angle to correct a reference position of the image reading unit.
Abstract:
According to an embodiment of the present invention, an image reader comprises a plurality of light receiving elements configured to receive light from an object to be read and to convert the light into image signals. The image reader further comprises means for determining a distance between the object and the plurality of light receiving elements at a plurality of different positions of the object. Moreover the image reader comprises means for selecting at least one correction process portion based at least on the distance between the object and the plurality of light receiving elements. The image reader comprises means for applying the at least one selected correction process to the image signal.
Abstract:
An image reading apparatus includes: a light source that generates light by synthesizing light from different illuminants and irradiates an irradiated object with the generated light; a reading unit that reads light irradiated by the light source and reflected by the irradiated object and generates image information in a first color space on the irradiated object; a color conversion unit that converts the image information in the first color space into image information in a second color space with a color conversion factor group; and a color conversion factor group setting unit that acquires from the reading unit the image information generated by using, as the irradiated object, a color sample formed in a color of light emitted by one of the illuminants, determines the color conversion factor group to be used, according to the acquired image information, and sets the color conversion factor group to the color conversion unit.
Abstract:
An image-reading apparatus and method for controlling the image-reading apparatus including a document plate where an original document is placed, a line image sensor that reads an image on the document plate by scanning to obtain image data, a reference-setting image that is placed outside a region of the document plate at a position where the line image sensor is able to read the reference-setting image, and a control unit configured to set a reference position when the image sensor reads the image, wherein the control unit detects the reference-setting image from the image data and, depending on a power-on state of the image-reading apparatus, selects the manner in which the reference position is set based on the reference-setting image.
Abstract:
An image reading apparatus includes: an image reading unit including a light source and a light receiving unit, and being capable of reading an image of a document sheet with predetermined plural reading conditions; a first light quantity information acquiring unit acquiring first light quantity information on a quantity of light emitted from the light source to a first white reference plate and received by the light receiving unit, for each reading condition; a second light quantity information acquiring unit acquiring second light quantity information on a quantity of light emitted from the light source to a second white reference plate and received by the light receiving unit, for fewer reading conditions than all the plural reading conditions; and a third light quantity information acquiring unit acquiring the second light quantity information for reading conditions other than the fewer reading conditions by using the acquired first light quantity information.
Abstract:
An image reader capable of entering a power save mode for saving power consumption during standby includes: a gain amplifier; a reference white plate that is to be scanned when gain control of the gain amplifier is performed to obtain a controlled gain value; a carriage that moves to an stops at an area corresponding to the reference white plate when the image reader enters the power save mode; a gain storage section that stores the controlled gain value as a recovery parameter when the image reader enters the power save mode; and a gain setting section that sets the recovery parameter as the controlled gain value when the image reader exits the power save mode.