Abstract:
A planographic printing plate precursor, including: a substrate; a photosensitive layer containing an IR absorber, a polymerization initiator, a polymerizable compound and a binder polymer; and a protective layer containing a UV absorber, disposed in this order. The photosensitive layer exhibits reduction in solubility in an alkaline developing solution upon being exposed to light having a wavelength of 750 nm to 1400 nm.
Abstract:
The invention provides an infrared laser-sensitive planographic printing plate precursor, comprising: a support having a hydrophilic surface; and a single layer or a plurality of photosensitive layers disposed on the support having a hydrophilic surface, wherein the outermost layer of the photosensitive layers includes an infrared absorbent and a copolymer that includes, as copolymerization components, (i) an acrylate or methacrylate having an alkyl group having four or more carbon atoms, (ii) an acrylate or methacrylate having an alkyl group having 1 through 3 carbon atoms, and (iii) a polymerizing monomer having an acid group, and the amount of the acrylate or methacrylate having an alkyl group having four or more carbon atoms being in a range of 0.1 to 20 mole percent of the copolymer.
Abstract:
A polymerizable composition comprising: (A) a compound which causes at least one of decarboxylation and dehydration by heat; (B) a radical initiator; (C) a compound having at least one ethylenically unsaturated bond; and (D) an infrared ray absorber.
Abstract:
A polymer having a polymerizable group and an alkyleneoxy groups on side chains thereof, and a polymerizable composition containing the polymer. The polymerizable composition preferably contains a polymerizable compound and a polymerization initiator. Also provided is a planographic printing plate precursor having a polymerizable layer on a hydrophilic support, the polymerizable layer containing a polymer having a polymerizable on a side chain thereof. The planographic printing plate precursor can form an image without being subjected to an alkali development. An undercoat layer containing a specific copolymer may be provided between the support and the photopolymerizable layer.
Abstract:
A method for producing a polymer latex includes: mixing a polymerizable monomer in which acrylonitrile accounts for 70% by weight or more of a total of the polymerizable monomer, water and a polymerization initiator to conduct emulsion polymerization; and distilling off a monomer unpolymerized in the emulsion polymerization.
Abstract:
A lithographic printing plate precursor includes: a support; an image-recording layer capable of being removed with water or an aqueous component; and an overcoat layer, in this order, wherein the overcoat layer is formed by drying a water-dispersible polymer particle, or includes: a support; an image-recording layer which is capable of being removed with at least one of printing ink and dampening water and contains (A) an infrared absorbing agent, (B) a polymerization initiator and (C) a polymerizable compound; and an overcoat layer, in this order, wherein the overcoat layer is formed by drying a water-dispersible polymer particle.
Abstract:
A negative-working lithographic printing plate precursor is disclosed comprising on a support having a hydrophilic surface or which is provided with a hydrophilic layer, a coating comprising an infrared absorbing agent, a first layer comprising an aqueous dispersion comprising hydrophobic thermoplastic polymer particles and a first hydrophobic binder, and a second layer located between said first layer and said support which comprises a second hydrophobic binder, characterized in that said first hydrophobic binder is a phenolic resin and said second hydrophobic binder is a polymer comprising at least one sulphonamide group.
Abstract:
The present invention provides a photosensitive lithographic printing plate which is excellent in both workability and image forming properties and is also capable of omitting the use of a laminated-paper. The present invention also provides an interleaving sensitive granular matting agent for photosensitive lithographic printing plate, which is used by applying onto the surface of an infrared-sensitive lithographic printing plate, comprising an infrared absorbing dye. Surface treatment is conducted by applying a granular matting agent containing an infrared absorbing dye onto the surface of an infrared-sensitive lithographic printing plate.
Abstract:
A method for preparing a negative-working lithographic printing plate is provided which comprises the steps of (1) providing a lithographic printing plate precursor comprising on a grained and anodized aluminum support, having a hydrophilic surface, a coating comprising (i) polymer particles which are core-shell particles having a hydrophobic heat-softenable core and a hydrophilic shell and (ii) an infrared light absorbing agent, (2) exposing said coating to heat, thereby inducing coalescence of said polymer particles at exposed areas of said coating, and (iii) developing said precursor by applying a gum solution to said coating, thereby removing non-exposed areas of said coating from said support.According to the above method the printing plates exhibit after ageing an improved clean-out and a reduced background stain, resulting in toning-free printing.
Abstract:
The present invention provides a polymerizable composition comprising (A) a compound including a polymerizable unsaturated group and (B) a macromolecular compound including, at a side chain thereof, a structure represented by the following general formula (I): Z−M+ General formula (I) wherein Z− represents COCOO−, COO−, SO3−, or SO2—N−—R where R represents a monovalent organic group and M+ represents an onium cation. The present invention also provides a negative type planographic printing plate precursor responsive to an infrared laser, the precursor being superior in recording sensitivity and printing durability and using the polymerizable compound as a recording layer.