Abstract:
A belt bucket elevator for conveying bulk material includes a driven endless belt (23), which is circulated via drums arranged on a bucket elevator head and on a bucket elevator base, and at least one row of buckets (10), each of which is individually fixed to the belt (23) and has a base (15), a back wall (11), lateral walls (13), and a front wall (12). Each of the buckets (10) has a smaller width at the base (15) than at the upper ends of the lateral walls (13). The belt (23), including the outer lateral edges of the belt, is completely covered by the buckets (10) arranged thereon.
Abstract:
An apparatus for use in unloading bulk material from containers that is vertically adjustable and provides a mechanism for maintaining a coupling engagement with an outlet on a container. The apparatus has a plurality of inflatable flexible members configured and arranged to maintain the coupling engagement of the apparatus to the container outlet.
Abstract:
A weighbelt feeder comprising a pair of metallic side rails along which moves a conveyor belt for transporting a material across the apparatus. The apparatus further includes a plurality of sheet metal frames spaced longitudinally apart on the pair of metallic side rails for supporting a mechanical load on the side rails. Each of the plurality of sheet metal frames comprises a support arm and a plurality of cross-arms cantilevered on the support arm and extending between the pair of metallic side rails. The support arm is fixed to a first side rail of the pair of metallic side rails and the free end of at least one of the cross-arms is fixed to a second side rail of the pair of metallic side trails. The apparatus also includes a metallic outer structure supporting the plurality of sheet metal frames and binding the frames into a unitary rigid construction.
Abstract:
A conveyor chain includes a plurality of chain links connected together in a chain, each including a pair of forward arms having a space therebetween and a rearward arm extending in a rearward direction. The forward arms of one link are configured to receive the rearward arm of an adjacent link to form a continuous chain. The rearward arm of each link extends a distance from the forward arms so that when adjacent links are coupled together, an engagement space is created between the forward arms of the links. The engagement space is configured to receive portions of sprockets that would engage the forward arms of the link for driving the chain.
Abstract:
The invention relates to an apparatus for monitoring a conveying installation, comprising: a conveying belt (2) made of elastomeric material with a load-bearing side (3) for the conveying material and with a running side (4), the conveying belt having, in particular, an embedded reinforcing element (7); at least one detectable segment (8) which is embedded in the load-bearing side (3) and/or running side, in the vicinity of the surface; a detection system (6), in particular in the form of an optoelectronic system, which contactlessly senses and evaluates the detectable segment (8), in particular in conjunction with a process computer; and other installation parts, namely a drive drum, reversing drum, supporting rollers, supporting frameworks, and possibly other components; the detectable segment (8) being based on a thermochromic substance which results in a change in color if the temperature changes within the critical temperature range of a conveying belt, the detection system (6) sensing and evaluating the change in color.
Abstract:
A loading assembly is provided that is configured to load transport containers with bulk material quickly and efficiently. A container support assembly is also provided that facilitate alignment and stable support of the container throughout loading. In use, a load bin of the loading assembly is inserted and retracted relative to the container by a drive mechanism. The barrier assembly confines the contents of the load bin in the container while the bin is retracted, allowing the contents of the bin to remain within the container upon removal of the bin. The container support assembly includes left and right ramps disposed along side the container. The ramps each include a support surface having an increasing height differential with reference to the ground from the distal end to the proximal end. The support assembly further includes an interface assembly configured to attach to the container and to engage the support surfaces of the left and the right ramps to distribute load onto the ramps. Thus, with the container properly positioned, a substantial portion of the container's load is borne by the ramps.
Abstract:
A gripping intake system for a dual belt conveyor includes a hopper for storing granular material adjacent the return sections of the upper and lower loop belts of the dual belt conveyor, at least one hold down roller engaging the lower loop belt such that the upper and lower loop belts are held in spaced apart configuration prior to the conveying sections of the upper and lower loop belts being biased towards one another in face-to-face conveying relationship whereby granular material falling from the hopper comes into contact with the upper and lower loop belts which engage and accelerate the granular material via gravity and frictional contact with the belts to approximately the same speed as the belts and then feed the accelerated granular material into the dual belt conveyor.
Abstract:
A gripping intake system for a dual belt conveyor includes a hopper for storing granular material adjacent the return sections of the upper and lower loop belts of the dual belt conveyor, at least one hold down roller engaging the lower loop belt such that the upper and lower loop belts are held in spaced apart configuration prior to the conveying sections of the upper and lower loop belts being biased towards one another in face-to-face conveying relationship whereby granular material falling from the hopper comes into contact with the upper and lower loop belts which engage and accelerate the granular material via gravity and frictional contact with the belts to approximately the same speed as the belts and then feed the accelerated granular material into the dual belt conveyor.
Abstract:
Disclosed is a belt conveyor capable of greatly reducing friction resistance between side portions of a belt and troughs, comprising troughs (5), a belt moving above the troughs (5) along a longitudinal direction thereof, belt bending members (12) provided outside on both sides of the belt in the width direction so as to be located upstream of an entrance (5a) of the troughs, for abutting with both side portions of the belt to be bent upwardly, load cells (14) for detecting a reactive force exerted by the belt with which the belt bending members (12) make contact, guide rails (16) engaged to cause the belt bending members (12) to be displaced to be fixed at a desired position so as to bend the side portions of the belt or restore the bent belt, and rails (20) for moving the guide rails (16) along the longitudinal direction of the belt.
Abstract:
The invention concerns a conveyor belt arrestor, primarily for use with inclined conveyor belts, which operates to arrest the belt in the event that the belt breaks. The arrestor (10) of the invention has a frame (16) which is mounted in use to fixed structure of a conveyor belt installation. The frame includes a reaction member in the form of a beam (16.3) located above the top run of the belt (12). A wedging structure (18, 34, 44) is located beneath the top run of the conveyor bell and is mounted for swinging movement in a vertical plane relative to the frame. A torsion spring (42) is tensioned in use to apply a rotational bias to the wedging structure in a direction to swing it upwardly in the event of the belt breaking and belt tension being lost. This lifts the top run (12.1) of the belt towards the reaction member (16.3) such that the top run of the belt is trapped between the wedging structure and the reaction member by a wedging action that prevents movement of the top run of the belt in a direction opposite to its normal direction of forward travel.