Abstract:
Systems and methods for determining whether networked system migrations are successful are disclosed. In accordance with one method, a first set of properties of the networked system on a source platform in a first administrative domain is determined. Further, the method includes transferring the networked system to a destination platform in a second administrative domain. In addition, a second set of properties of the transferred system on the destination platform is determined, where the first and second sets of properties include functional properties and at least one of: performance properties, security properties or reliability properties. The method also includes outputting an indication that the transfer of the system to the destination platform is successful in response to determining that one or more of the properties of the second set are equivalent to corresponding properties of the first set.
Abstract:
Methods and apparatus are disclosed for applying successive multi-rank beamforming strategies (e.g., successive precoding strategies) for the design of precoders over a set of parallel channels. Successive beamforming is applied to a narrow band channel model and is also applied for finer quantization of a single beamforming vector (e.g., recursive beamforming). A first embodiment provides the optimal approach with high complexity. An alternative embodiment provides successive beamforming for near optimal precoding selection with medium complexity. A low complexity method for precoder selection is also provided wherein a channel representative matrix for the set of parallel channels is determined and successive beamforming on the calculated channel representative is applied.
Abstract:
A multi-rank beamforming (MRBF) scheme in which the downlink channel is estimated and an optimal precoding matrix to be used by the MRBF transmitter is determined accordingly. The optimal precoding matrix is selected from a codebook of matrices having a recursive structure which allows for efficient computation of the optimal precoding matrix and corresponding Signal to Interference and Noise Ratio (SINR). The codebook also enjoys a small storage footprint. Due to the computational efficiency and modest memory requirements, the optimal precoding determination can be made at user equipment (UE) and communicated to a transmitting base station over a limited uplink channel for implementation over the downlink channel.
Abstract:
A multi-rank beamforming (MRBF) scheme in which the downlink channel is estimated and an optimal precoding matrix to be used by the MRBF transmitter is determined accordingly. The optimal precoding matrix is selected from a codebook of matrices having a recursive structure which allows for efficient computation of the optimal precoding matrix and corresponding Signal to Interference and Noise Ratio (SINR). The codebook also enjoys a small storage footprint. Due to the computational efficiency and modest memory requirements, the optimal precoding determination can be made at user equipment (UE) and communicated to a transmitting base station over a limited uplink channel for implementation over the downlink channel.
Abstract:
Systems and methods are disclosed to perform relation extraction in text by applying a convolution strategy to determine a kernel between sentences; applying one or more semi-supervised strategies to the kernel to encode syntactic and semantic information to recover a relational pattern of interest; and applying a classifier to the kernel to identify the relational pattern of interest in the text in response to a query.
Abstract:
Methods and apparatus are disclosed for applying successive multi-rank beamforming strategies (e.g., successive precoding strategies) for the design of precoders over a set of parallel channels. Successive beamforming is applied to a narrow band channel model and is also applied for finer quantization of a single beamforming vector (e.g., recursive beamforming). A first embodiment provides the optimal approach with high complexity. An alternative embodiment provides successive beamforming for near optimal precoding selection with medium complexity. A low complexity method for precoder selection is also provided wherein a channel representative matrix for the set of parallel channels is determined and successive beamforming on the calculated channel representative is applied.
Abstract:
A quantized multi-rank beamforming scheme for multiple-antenna systems such as a multiple-input-multiple-output (MIMO) wireless downlink User equipment (UE) estimates downlink channel and transmit power and determines rank and power allocations. A quantized beamforming matrix is then determined by the UE using successive beamforming. The UE also determines channel quality indices (CQI) which it feeds-back to the wireless downlink base station along with the index of the quantized beamforming matrix. The base station uses the CQI information to select a UE for scheduling of downlink transmission and the quantized beamforming matrix index received from the selected UE to beamform the downlink transmission to the UE. Base station overhead and is minimized while providing near-optimal performance given the constraints of a limited feed-back channel and computational complexity of the UE.
Abstract:
Systems and methods for conveying and determining modulations schemes employed by co-scheduled users are disclosed. In addition, methods and systems for designing signaling schemes that convey such information are also disclosed. In accordance with one method, an index is received and a table of indices in which the received index denotes a plurality of different sets of modulation schemes is referenced. Further, one or more modulation schemes of at least one co-scheduled user is determined based on the referencing. In addition, data signals are received and are processed by utilizing the one or more modulation schemes.
Abstract:
Methods and systems for doped rateless retransmission include receiving ratelessly coded symbols. An attempt is made to decode the coded symbols using a processor by creating an associated code graph that represents the structure of the rateless code used by the symbols. If the decoding attempt fails, an input node is selected from the code graph using a metric that gauges the number and degree of connections to the input node based on the code graph structure. The selected input node is then requested for retransmission of the selected input node by a feedback channel.
Abstract:
A method includes the steps of i) listing out all possibilities for a first symbol of a two stream signal; ii) determining a second symbol of the two stream signal for each of the first symbol listed out, iii) evaluating a metric for each of the first symbol and second symbol pair, iv) listing out all possibilities for second symbol, v) determining a first symbol for each choice of the second symbol listed out, vi) evaluating a metric for each of the second symbol and first symbol pair, vii) determining an exact maximum log likelihood ratio for all bits using the metrics, and viii) decoding codeword(s) in the two stream signal using the determined exact maximum log likelihood ratio for all bits.