Abstract:
Ambient light is detected by a photodiode circuit by measuring the time taken for a digital output of the photodiode circuit to change state in response to exposure of a photodiode of the photodiode circuit to that ambient light. A nominal time for state change is calculated based on photodiode circuit characteristics. Furthermore, an effective time for the photodiode circuit digital output to change state is determined in a calibration mode where the photodiode has been disconnected and a reference current is applied to the circuit. An illumination value of the detected ambient light is then calculated as a function of: the measured time, the effective time and the nominal time.
Abstract:
A circuit is provided for controlling a battery-charger device with a closed-loop architecture. The circuit includes sensing means for sensing an operative quantity of the device, control means, and driving means. The control means alternately controls the sensing means to track the operative quantity during a tracking phase and to hold the operative quantity during a holding phase. The driving means provides a regulation signal that regulates the operative quantity based on a comparison between the operative quantity sensed by the sensing means and a reference value. The control means causes the driving means to hold the regulation signal during at least part of each of the holding phases. Also provided is a method of controlling a battery-charger device with a closed-loop architecture.
Abstract:
A one-time programmable circuit uses forced BJT hFE degradation to permanently store digital information as a logic zero or logic one state. The forced degradation is accomplished by applying a voltage or current to the BJT for a specific time to the reversed biased base-emitter junction, allowing a significant degradation of the junction without destroying it.
Abstract:
A method is described for fixing a lens of an optical group with respect to an optical sensor in an image acquisition device comprising the steps of housing the optical sensor in a housing, fixing a lower holder of the optical group to the housing, aligning an upper holder of the optical group, wherein the lens is placed, with the sensor so as to align a focusing point of the lens with respect to the sensor, welding the upper holder to the lower holder. The welding step may be performed by means of ultrasounds.
Abstract:
An integrated circuit includes a substrate with an active area, a first insulating layer, a second insulating layer, and a phase-change material. The integrated circuit further includes a heating element in an L-shape, with a long side in direct physical contact with the phase-change material and a short side in direct physical contact with a via. The heating element is surrounded by first, second, and third insulating spacers, with the first insulating spacer having a planar first sidewall in contact with the long side of the heating element, a convex second sidewall, and a planar bottom face in contact with the short side of the heating element. The second and third insulating spacers are in direct contact with the first insulating spacer and the long side of the heating element.
Abstract:
A system includes lighting devices coupled to output supply pins, a microcontroller circuit, and a driver circuit, which receives data therefrom, and switches coupled in series to the lighting devices. The driver circuit includes output supply pins and selectively propagates a supply voltage to the output supply pins to provide respective pulse-width modulated supply signals at the output supply pins. The driver circuit computes duty-cycle values of the pulse-width modulated supply signals as a function of the data received from the microcontroller circuit. The lighting devices include at least one subset coupled to the same output supply pin. The microcontroller individually controls the switches via respective control signals to individually adjust a brightness of the lighting devices in the at least one subset of lighting devices.
Abstract:
A method includes dividing a field of view into a plurality of zones and sampling the field of view to generate a photon count for each zone of the plurality of zones, identifying a focal sector of the field of view and analyzing each zone to select a final focal object from a first prospective focal object and a second prospective focal object.
Abstract:
A system includes inertial sensors and a GPS. The system generates a first estimated vehicle velocity based on motion data and positioning data, generates a second estimated vehicle velocity based on the processed motion data and the first estimated vehicle velocity, and generates fused datasets indicative of position, velocity and attitude of a vehicle based on the processed motion data, the positioning data and the second estimated vehicle velocity. The generating the second estimated vehicle velocity includes: filtering the motion data, transforming the filtered motion data in a frequency domain based on the first estimated vehicle velocity, generating spectral power density signals, generating an estimated wheel angular frequency and an estimated wheel size based on the spectral power density signals, and generating the second estimated vehicle velocity as a function of the estimated wheel angular frequency and the estimated wheel size.
Abstract:
A method includes dividing a field of view into a plurality of zones and sampling the field of view to generate a photon count for each zone of the plurality of zones, identifying a focal sector of the field of view and analyzing each zone to select a final focal object from a first prospective focal object and a second prospective focal object.
Abstract:
In an embodiment a processing system includes a sub-circuit including a three-state driver circuit, wherein the three-state driver circuit has a combinational logic circuit configured to monitor logic levels of a first signal and a second signal, and selectively activate one of the following switching states as a function of the logic levels of the first signal and the second signal: in a first switching state, connect the transmission terminal to the positive supply terminal by closing the first electronic switch, in a second switching state, connect the transmission terminal to the negative supply terminal by closing the second electronic switch, and in a third switching state, put the transmission terminal in a high-impedance state by opening the first electronic switch and the second electronic switch.