Abstract:
Methods for inspecting contents of a container. High-energy penetrating radiation collimated into a fan beam illuminates an inspected container from one side, while a plurality of detector plates are disposed on the opposite side of the container. Each detector plate has a plurality of detector modules, each of which, in turn, is disposed on a remotely activated alignment and has multiple detector elements. A controller governs the orientation of each of the plurality of detector plates based at least on the detector signal generated by its detector elements such that each detector element of each detector module of each detector plate may be aligned to within a specified fraction of the transverse dimension of the fan beam as measured at the exit slot.
Abstract:
An apparatus and method for generating electronically steerable beams of sequential penetrating radiation. Charged particles from a source are formed into a beam and accelerated to a target. Electromagnetic radiation generated by the target is emitted with an angular distribution which is a function of the target thickness and the energy of the particles. A beam of particles is produced by allowing the radiation to exit from an apparatus through a collimator proximal to the target. The direction of the beam is determined by the point of radiation production and the corresponding array of transmission regions of the collimator.
Abstract:
The present specification provides a detector for an X-ray imaging system. The detector includes at least one high resolution layer having high resolution wavelength-shifting optical fibers, each fiber occupying a distinct region of the detector, at least one low resolution layer with low resolution regions, and a single segmented multi-channel photo-multiplier tube for coupling signals obtained from the high resolution fibers and the low resolution regions.
Abstract:
The present specification describes an X-ray detector that includes at least one scintillator screen for absorbing incident X rays and emitting corresponding light rays, a wavelength shifting sheet (WSS) coupled with the at least one scintillator screen for shifting the emitted light rays, at least one wavelength shifting fiber (WSF) coupled with at least one edge of the WSS for collecting the shifted light rays, and a photodetector for detecting the collected light rays.
Abstract:
The present specification describes a system for synchronizing a transmission detector and a backscatter detector integrated with a portable X-ray scanner. The system includes a transmitter connected with the transmission detector for transmitting the analog detector signal and a receiver connected with the scanner for receiving the transmitted analog detected signal where the transmitter and the receiver operate in the ultra-high frequency range.
Abstract:
The present specification describes a system for synchronizing a transmission detector and a backscatter detector integrated with a portable X-ray scanner. The system includes a transmitter connected with the transmission detector for transmitting the analog detector signal and a receiver connected with the scanner for receiving the transmitted analog detected signal where the transmitter and the receiver operate in the ultra-high frequency range.
Abstract:
An X-ray tube with an anode assembly and specially designed heat transfer element is described. The anode assembly includes an X-ray producing target and a substantially cylindrical electrode that stops or inhibits electrons that may back-scatter from the target. At least one heat transfer element is positioned proximate the anode assembly and in the region between a conducting enclosure and a non-conducting hollow housing or tube. The heat transfer element is positioned to thermally couple the hot anode assembly to an air-cooled conducting enclosure while maintaining an electric isolation.
Abstract:
Methods for characterizing living plants, wherein one or more beams of penetrating radiation such as x-rays are scanned across the plant under field conditions. Compton scatter is detected from the living plant and processed to derive characteristics of the living plant such as water content, root structure, branch structure, xylem size, fruit size, fruit shape, fruit aggregate volume, cluster size and shape, fruit maturity and an image of a part of the plant. Ground water content is measured using the same technique. Compton backscatter is used to guide a robotic gripper to grasp a portion of the plant such as for harvesting a fruit.
Abstract:
A conveyance and methods for x-ray inspection of an object. The conveyance has a bed with attached wheels and detector elements disposed along a pontine structure coupled to the conveyance. A source of penetrating radiation is coupled to the conveyance and disposed so as to irradiate each of the detector elements from a single position. An automated manual transmission couples power from an engine to a set of the wheels of the conveyance, both for road travel and for x-ray inspection.
Abstract:
Methods for generating a multiple-energy X-ray pulse. A beam of electrons is generated with an electron gun and modulated prior to injection into an accelerating structure to achieve at least a first and specified beam current amplitude over the course of respective beam current temporal profiles. A radio frequency field is applied to the accelerating structure with a specified RF field amplitude and a specified RF temporal profile. The first and second specified beam current amplitudes are injected serially, each after a specified delay, in such a manner as to achieve at least two distinct endpoint energies of electrons accelerated within the accelerating structure during a course of a single RF-pulse. The beam of electrons is accelerated by the radio frequency field within the accelerating structure to produce accelerated electrons which impinge upon a target for generating Bremsstrahlung X-rays.