Abstract:
A parallel resonant converter circuit with current-equalization function includes a power input terminal, a power output terminal, an output capacitor, first and second resonant converters and a third transformer. The first resonant converter is electrically coupled between the power input terminal and the output capacitor/power output terminal. The first resonant converter includes a first transformer. The second resonant converter is electrically coupled between the power input terminal and the output capacitor. The first resonant converter and the second resonant converter are coupled in parallel. The second resonant converter includes a second transformer. The third transformer includes a first coil winding set and a second coil winding set. The first coil winding set is electrically coupled between the power input terminal and the first transformer in series. The second coil winding set is electrically coupled between the power input terminal and the second transformer in series.
Abstract:
A power supply case having a waterproof structure includes an upper case and a lower case, a waterproof structure is formed by a waterproof groove and a waterproof rib. After the upper case and the lower case are engaged, an engaged status is formed by the waterproof rib and the waterproof groove, and the power supply case is formed with at least an open zone penetrated in the area where the waterproof structure is formed, and characterized in that: a surface of the open zone defined in the waterproof groove is inwardly formed with an extended groove part which is communicated with the waterproof groove. The waterproof structure is able to be matched with a waterproof strip, and the length of the waterproof strip is able to be longer than the length of the waterproof groove.
Abstract:
A multi-input power system with an inrush current suppression function receives at least two input power sources, and includes at least two filter-rectification circuits, at least two boost PFC circuits, a current suppression circuit, and a DC-to-DC conversion circuit. Each filter-rectification circuit correspondingly receives the input power source, and converts the at least two input power sources into at least two rectified voltages. Each boost PFC circuit is correspondingly connected to the filter-rectification circuit, receives the rectified voltage, and performs a power factor correction to the rectified voltage to provide a conversion voltage. The current suppression circuit is connected to the at least two filter-rectification circuits and the at least two boost PFC circuits. The DC-to-DC is connected to the at least two boost PFC circuits and the current suppression circuit, receives the conversion voltage and converts the conversion voltage into an output voltage.
Abstract:
A common-mode noise cancellation circuit includes a capacitor and an inductor. The inductor has a three coupled winding, including a first coupled winding, a second coupled winding, and a third coupled winding. An input end of the first coupled winding and an input end of the second coupled winding are respectively coupled to two ends of an input power source. An input end of the third coupled winding is coupled to the input end of the second coupled winding, and an output end of the third coupled winding is coupled to the capacitor. An output end of the first coupled winding and an output end of the second coupled winding are respectively coupled to two input ends of a power conversion stage.
Abstract:
A hybrid-mode power factor corrector includes a power factor correction circuit, a zero-crossing detection circuit, and a controller. The power factor correction circuit includes a power inductor and a power switch, and the zero-crossing detection circuit detects an inductor current. The controller controls the switching of the power switch by an operation frequency to control the power factor correction circuit converting an input voltage into an output voltage, and controls an input current drawn by the power factor correction circuit to follow the input voltage. The controller turns on the power switch to according to a switching time of the power switch when the power switch is switched to reach to the operation frequency and the inductor current is as low as a threshold value close to zero.
Abstract:
A multi-phase boost converting apparatus includes a multi-phase boost converter and a passive lossless snubber, wherein the passive lossless snubber includes a first resonant capacitor, a second resonant capacitor, an output-end first unidirectional conduction component, an output-end second unidirectional conduction component, an input-end first unidirectional conduction component, an input-end second unidirectional conduction component and a resonant inductor.
Abstract:
A hybrid-mode power factor corrector includes a power factor correction circuit, a zero-crossing detection circuit, and a controller. The power factor correction circuit includes a power inductor and a power switch, and the zero-crossing detection circuit detects an inductor current. The controller controls the switching of the power switch by an operation frequency to control the power factor correction circuit converting an input voltage into an output voltage, and controls an input current drawn by the power factor correction circuit to follow the input voltage. The controller turns on the power switch to according to a switching time of the power switch when the power switch is switched to reach to the operation frequency and the inductor current is as low as a threshold value close to zero.
Abstract:
An LLC resonant converting apparatus determines to operate as a half-bridge LLC resonant converter or a full-bridge LLC resonant converter based on the magnitude of the input voltage. The present disclosure can solve the problem that the input voltage range of the LLC resonant converter is not wide enough.
Abstract:
A power supply used to convert an input voltage into an output voltage, and the power supply includes an input detection circuit, a conversion circuit, a detection circuit, and a controller. The input detection circuit provides a power good signal or a power fail signal according to the input voltage. The conversion circuit converts the input voltage into an output voltage, and the detection circuit detects the output voltage according to the power good signal to accordingly provide an output feedback signal with a first feedback value. The controller stabilizes a voltage level of the output voltage according to the first feedback value. The detection circuit self-adjusts a feedback condition according to the power fail signal, and correspondingly adjusts the output feedback signal to a second feedback value according to the feedback condition. The controller reduces the voltage level of the output voltage according to the second feedback value.
Abstract:
A boost converting apparatus includes a boost converter and a passive lossless snubber, wherein the passive lossless snubber includes an input-end unidirectional conduction component, a resonant inductor, a resonant capacitor, and an output-end unidirectional conduction component. The present disclosure can solve the problems that the energy conversion efficiency of the hard-switching boost converter is poor and the structure of the soft-switching boost converter is complicated.