Abstract:
A passive coupled-inductor soft-switching circuit of a power factor corrector is provided. The passive coupled-inductor soft-switching circuit includes a power input terminal, a first inductor, a first diode, a power output terminal, a power switch and a buffer circuit. The first inductor has a first terminal and a second terminal, wherein the first terminal of the first inductor is electrically coupled with the power input terminal. The first diode has a positive terminal and a negative terminal, wherein the positive terminal of the first diode is electrically coupled with the second terminal of the first inductor. The power output terminal is electrically coupled with the negative terminal of the first diode. The buffer circuit is electrically coupled with the power switch. By using the buffer circuit, the voltage and current have phase interlacing shifts and thereby reducing the switching loss.
Abstract:
A passive soft-switching circuit of a power factor corrector is provided. The passive soft-switching circuit includes a power input terminal, a first inductor, a first diode, a power output terminal, a power switch and a buffer circuit. The first inductor has a first terminal and a second terminal, wherein the first terminal of the first inductor is electrically coupled with the power input terminal. The first diode has a positive terminal and a negative terminal, wherein the positive terminal of the first diode is electrically coupled with the second terminal of the first inductor. The power output terminal is electrically coupled with the negative terminal of the first diode. The buffer circuit is electrically coupled with the power switch. By using the buffer circuit, the voltage and current have phase interlacing shifts and thereby reducing the switching loss.
Abstract:
A discharge circuit for a diode reverse leakage current includes an input positive terminal, an input negative terminal, an output positive terminal coupled to the input positive terminal, an output negative terminal coupled to the input negative terminal, a diode and a current source device. The diode has an anode terminal coupled to the input positive terminal and a cathode terminal coupled to the output positive terminal. The current source device has a first end coupled to the anode terminal of the diode and a second end coupled between the input and output negative terminals. The voltage difference across the current source device is reduced by less than about 1 V when input voltage is switched off. The current source device continues to operate when the input voltage is normal. As P=VI, the loss is proportional to the input voltage, therefore achieving the objective of low loss.
Abstract:
A parallel resonant converter circuit with current-equalization function includes a power input terminal, a power output terminal, an output capacitor, first and second resonant converters and a third transformer. The first resonant converter is electrically coupled between the power input terminal and the output capacitor/power output terminal. The first resonant converter includes a first transformer. The second resonant converter is electrically coupled between the power input terminal and the output capacitor. The first resonant converter and the second resonant converter are coupled in parallel. The second resonant converter includes a second transformer. The third transformer includes a first coil winding set and a second coil winding set. The first coil winding set is electrically coupled between the power input terminal and the first transformer in series. The second coil winding set is electrically coupled between the power input terminal and the second transformer in series.