Abstract:
A wing arrangement for an aircraft, comprising a wing having a base section and a tip section pivotably connected to base section such that the tip section is pivotable about a pivot axis between a deployed position and a stowed position. The wing arrangement also comprises a latching arrangement which includes an engagement portion, a latching actuator selectively movable between a first actuator position and a second actuator position, an elastically deformable structure, and a latching element. When the tip section is pivoted from the stowed or deployed position into an engagement position, the elastically deformable structure is initially deformed, and as the tip section pivots further into the deployed or stowed position, the elastic deformation of the elastically deformable structure decreases.
Abstract:
A latching device for a wing including a support structure (29), a latching bolt (35) having a longitudinal axis (36) and being slidably supported by the support structure (29) such that the latching bolt (35) is movable between a retracted position and an extended position. The latching device (27) includes a first hydraulic actuator (47a) and a first connector assembly (38a) adapted to be connected to a first hydraulic system of an aircraft (1), and at least one second hydraulic actuator (47b) and a second connector assembly (38b) connected to a second hydraulic system. The first hydraulic actuator (47a) and the second hydraulic actuator (47b) are adapted to effect movement of the latching bolt (35) from the extended position into the retracted position independent of the other one of the at least one first hydraulic actuator (47a) and the at least one second hydraulic actuator (47b).
Abstract:
A method for assembling a primary structure of an aircraft pylon, includes a step of fixing an angle bracket to each of the first and second lateral panels such as to obtain an L form for each of the first and second lateral panels prior to a placement of said L forms each placed against two sides of each transverse frame. This assembly technique makes it possible to reduce the mounting clearances such that it is unnecessary to fit shims, resulting in a reduction of mounting time and manufacturing costs.
Abstract:
An external part of an aircraft (such as a fairing) comprising a skin made with flexible materials attached to rigid supporting elements (such as longerons and frames) arranged in, at least, two directions. The skin comprises inner inflatable panels in all bays delimited by the rigid supporting elements and/or an external inflatable panel. The skin is joined to the supporting elements so that its external surface complies with aerodynamic requirements.
Abstract:
An assembly comprising at least two non-metal components which are fixed to each other using at least one fixing system. The fixing system includes a fixing device with a fixing element which is provided with a head and a rod, and a crimping ring which is in contact with one of the components. A protection device is a part of the fixing system which delimits a cavity for confining gas around a portion of the device comprising the crimping ring. In order to improve the repeatability of the operation for positioning the protection device, a guiding device is provided which includes an assembly element on the portion of the fixing device, and an element for guiding the protection device.
Abstract:
A method of securing a lower trailing edge panel of an aircraft wing. The wing includes a wingbox with an upper cover, a lower cover, and a rear spar. A leading edge of the lower trailing edge panel is attached to the wingbox. A support structure is also attached to the wingbox and a connector is mounted to the trailing edge panel. A link is provided, with a first end and a second end. The second end of the link is pivotally attached to the support structure at a pivot joint. A biasing arrangement biases the link towards an upright orientation in which the first end of the link is higher than the pivot joint. The link is held in its upright orientation with the biasing arrangement; and then the first end of the link is attached to the connector.
Abstract:
An overheat detection system for an aircraft, the system comprising a first bleed monitoring computer, BMC1, configured to identify leakages in a pneumatic system, the BMC1 including a first optical controller, a second bleed monitoring computer, BMC2, the BMC2 including a second optical controller, an optical fiber link connecting the first optical controller of the BMC1 and the second optical controller of the BMC2 for communication between the BMC1 and the BCM2 and between the first optical controller and the second optical controller, wherein the first and the second optical controllers are configured to detect overheat of the optical fiber link based on a wavelength shift of a modulated optical signal transmitted through the optical fiber link, and transmit signals to the first BMC1 and the second BMC2 based at least on the detected overheat.
Abstract:
A method of securing a lower trailing edge panel of an aircraft wing. The wing includes a wingbox with an upper cover, a lower cover, and a rear spar. A leading edge of the lower trailing edge panel is attached to the wingbox. A support structure is also attached to the wingbox and a connector is mounted to the trailing edge panel. A link is provided, with a first end and a second end. The second end of the link is pivotally attached to the support structure at a pivot joint. A biasing arrangement biases the link towards an upright orientation in which the first end of the link is higher than the pivot joint. The link is held in its upright orientation with the biasing arrangement; and then the first end of the link is attached to the connector.
Abstract:
An aircraft wing including a wingbox with an upper cover, a lower cover, a forward spar and a rear spar. A leading edge of a trailing edge panel is attached to the wingbox. A support structure is attached to the wingbox. A kinked link includes a first arm, a second arm, and a corner where the first and second arms meet. The first arm of the kinked link is pivotally attached to the trailing edge panel at a first pivot joint, and the second arm of the kinked link is pivotally attached to the support structure at a second pivot joint.
Abstract:
A method to control folding of a wing tip section about a fixed base wing section by a control system that automatically determines whether: (i) a command signal is received to fold the wing tip section, (ii) a first condition indicating signal indicates that the aircraft is on the ground; (iii) the current speed of the aircraft is no greater than a preset maximum speed, and (iv) the aircraft is not at gate in an airport.