Abstract:
A liquid crystal display panel includes n-number of gate lines, (m+1)-number of data lines and (m×n)-number of pixels, wherein the ‘n’ and ‘m’ are natural numbers. The gate lines are extended in a first direction. The data lines are extended in a second direction that is substantially perpendicular to the first direction. The first and last data lines are electrically connected to each other. The pixels are arranged in a matrix shape. M-number of the pixels is arranged along the first direction, and n-number of the pixels is arranged along the second direction. A pixel electrode of the pixels arranged in the second direction are electrically connected to left and right data lines alternately to enhance a display quality and reduce power consumption.
Abstract:
A display substrate includes a driving element, a switching element, a gate line, a data line, a driving voltage line and an electroluminescent element. The driving element includes a driving control electrode formed from a first conductive layer, and a driving input electrode and a driving output electrode formed from a second conductive layer. The switching element includes a switching control electrode formed from the second conductive layer, and a switching input electrode and a switching output electrode formed from a third conductive layer. The gate and data lines are formed from the second and third conductive layers, respectively. The driving voltage line is formed from the third conductive layer. Thus, misalignment between upper and lower patterns may be prevented to improve the reliability of a manufacturing process and increase an aperture ratio, thereby enhancing display quality.
Abstract:
A display device includes a color converter, a timing controller, and a display panel. The color converter converts R, G, and B data into R′, G′, B′, and W′ data. The R′, G′, B′, and W′ data includes first component data and second component data. The timing controller provides the first component data to a data driver during a first driving time and provides the second component data to the data driver during a second driving time. The data driver provides gray level display voltages corresponding to the first component data and the second component data to a data line, and the display panel displays the R′, G′, B′, and W′ data in response to the gray level display voltage.
Abstract:
A driving device for a display device and a method of compensating an image signal of the display device in which the driving device for a display device having a plurality of pixels includes: a first compensating unit that converts an image signal corresponding to the pixel into a first compensated signal according to a difference between the image signal, and an image signal in a previous frame; a second compensating unit that converts the first compensated signal corresponding to the pixel into first and output image signals; an edge detecting unit that outputs a signal according to whether the pixel exists in an edge region in an image based on a difference between image signals corresponding to peripheral pixels; and a first calculating unit that generates converted signals of the first and second output signals based on the output signal of the edge detecting unit.
Abstract:
The present invention relates to an organic light emitting display device and a method for processing image signals thereof. An organic light emitting display device according to the present invention receives a plurality of input image signals respectively corresponding to the pixels representing a first color, a second color, a third color, and a white color, and converts the input image signals of at least two dots respectively representing the first color to the third color among the input image signals according to a first extension coefficient to generate a plurality of four-color image signals of at least two dots respectively representing the first color, the second color, the third color, and the white color, to respectively sum a distortion amount of a color impression of the four-color image signals of at least two dots, to calculate a partial extension coefficient corresponding to the sum result, and to extension-convert the input image signals of at least two dot according to the partial extension coefficient thereby generating the four-color output image signals of at least two dots.
Abstract:
An apparatus for driving a display device including a plurality of four color pixels is provided, which includes: an input unit receiving input three-color image signals; an image signal modifier converting the three-color image signals into output four-color image signals such that a maximum gray of the input three-color image signals is equal to a maximum gray of the output four-color image signals; and an output unit outputting the output four-color image signals.
Abstract:
A memory unit includes a buffer memory unit having first and second write buffer memories and first and second read buffer memories, and a frame memory section. The buffer memory unit is connected to the frame memory and a gray signal converter. The first and the second write buffer memories alternately store a sequence of data segments of current gray data from a signal source and alternately output the current data segments to the frame memory for storing. The first and the second read buffer memories read out a sequence of data segments of previous gray data from the frame memory and alternately output the previous data segments to the gray signal converter. The frame memory stores a plurality of previous and current data segments, and the total amount of the data segments stored in the frame memory is equal to or larger than those for one frame.
Abstract:
A display device capable of expressing gradations with improved accuracy is presented. The device includes: a switching thin film transistor (TFT) and a driving TFT on an insulating substrate; a first electrode electrically connected with the driving TFT; a light emitting layer; a second electrode that supplies a common voltage to the light emitting layer; and a data driver that supplies the switching TFT with a data voltage ranging from a first voltage to a second voltage. The first voltage, the second voltage and the common voltage satisfy the equations: 1) First voltage−common voltage−voltage dropped by light emitting layer=black voltage±0.1|black voltage−white voltage|; 2) Second voltage−common voltage−voltage dropped by light emitting layer=white voltage±0.1|black voltage−white voltage|. The black voltage and the white voltage refer to gate-source voltages (VGS) that express the lowest gradation and the highest gradation, respectively.
Abstract:
The present invention provides a display device and a method of fabricating the same. The display device includes a substrate, a transflective layer including first diffusive layers and second diffusive layers alternately arranged on the substrate, the first diffusive layers including a first diffusive material having a first refractive index, and the second diffusive layers including a second diffusive material having a second refractive index different from the first refractive index, a plurality of via holes formed in the transflective layer, and a light-emitting layer disposed on the substrate.
Abstract:
Disclosed is an LCD and driving method thereof. The present invention comprises a data gray signal modifier for receiving gray signals from a data gray signal source, and outputting modification gray signals by consideration of gray signals of present and previous frames; a data driver for changing the modification gray signals into corresponding data voltages and outputting image signals; a gate driver for sequentially supplying scanning signals; and an LCD panel comprising a plurality of gate lines for transmitting the scanning signals; a plurality of data lines, being insulated from the gate lines and crossing them, for transmitting the image signals; and a plurality of pixels, formed by an area surrounded by the gate lines and data lines and arranged as a matrix pattern, having switching elements connected to the gate lines and data lines.