Abstract:
The present disclosure discloses a light emitting element driving circuit. In one embodiment the light emitting element driving circuit may comprise a power conversion circuit and a current balancing circuit. In other embodiment the light emitting element driving circuit may further comprise other modules integrated and interacting with the power conversion circuit and the current balancing circuit, such as fault detection and protection circuits, status indication circuits and phase-shift PWM dimming circuits. In other embodiment, the present disclosure further discloses a current balancing circuit. In other embodiment, the present disclosure further discloses a fault detection and protection circuit. In still other embodiment, the present disclosure further discloses a phase-shift PWM dimming circuit.
Abstract:
There is provided an apparatus for determining a carrier-to-noise power density ratio (CN0) of a spread spectrum signal. The apparatus includes a signal power calculation unit and a conversion unit. The signal power calculation unit determines a signal power indicator indicative of a signal to noise ratio of the spread spectrum signal. The conversion unit is coupled to the signal power calculation unit and stores a lookup table representing a relationship between the signal power indicator and the carrier-to-noise power density ratio. The conversion unit is operable for converting the signal power indicator to the carrier-to-noise power density ratio according to the lookup table.
Abstract:
A portable electronic device for measuring a distance D1 between two points E1, E2, includes a visible and rotatable light emitter, an angle computing unit, a distance computing unit and an output unit. The light emitter generates a rotatable light beam capable of rotating from pointing in an initial direction to project to the point E1. The initial direction is substantially perpendicular to a line defined by the points E1, E2. A distance H1 between the light emitter and the line, and a distance S1 from the point E2 to the point of intersection of the line defined by the first and second points E1, E2 with the initial direction, are known. The angle computing unit computes an angle defined by the visible light beam projecting to the point E1 and the initial direction according to the rotatable light beam. The distance computing unit computes the distance D1 based on the angle, the distance H1 and the distance S1.
Abstract:
An electronic device includes an image capturing device, a touch sensitive display, a distance measuring device, and a processor. The image capturing device picks up an image of the object and determining a focal length of the image capturing device at which the image capturing device captures the image. The touch sensitive display displays the image and receives input touches on the image to determine a touching region. The distance measuring device determines a distance between the electronic device and the object. The processor extracts the dimension of the touching region to determine the dimension of the image of the object, and determines the dimension of the object based on the dimension of the image of the object, the distance, and a pre-setting proportional relationship about the dimension of the image of the object, the distance between the electronic device and the object, and the focal length.
Abstract:
A method for estimating signal quality of a spread spectrum signal is provided. The method includes squaring a plurality of in-phase correlation results and a plurality of quadrature correlation results, summing each squared in-phase correlation result and the corresponding correlation result to obtain a plurality of sum-of-square values, detecting a peak value among the plurality of sum-of-square results, calculating an average of non-peak values among the plurality of sum-of-square results. The peak value is regarded as a signal power value, while the averaged non-peak values are regarded as an average noise power value. A signal-to-noise ratio is then calculated based on the signal power value and the average noise power value. A method for determining the parameters for the tracking loop is also provided. The method includes estimating the signal-to-noise ratio of the spread spectrum signal, and determining the tracking loop parameters based on the signal-to-noise ratio.
Abstract:
A system includes a point of interest (POI) database and a power engine. The POI database is used for storing a plurality of POIs used for a satellite navigation system (SNS). The power engine is coupled to the POI database for searching a plurality of desired POIs from the POI database and downloading the desired POIs as a plurality of downloaded POIs to a terminal device via a network. The power engine also receives a modified POI from the terminal device via the network and updates the POI database by uploading the modified POI to the POI database.
Abstract:
A method for calendaring an activity based on roles, including the steps of acquiring a request for calendaring the activity for a plurality of roles invited to attend the activity; acquiring data on existing activities which have been calendared for all the specific individuals in the plurality of roles invited to attend the activity; and determining the time interval for holding the activity based on the data on existing activities which have been calendared for all the specific individuals in the plurality of roles invited to attend the activity and the request for calendaring the activity.
Abstract:
An exemplary debugging system (2) for a liquid crystal display device (26) includes a host computer (22). The host computer includes a graphics card (220), a driver layer (225), and an application layer (226). The application layer includes a graphical user interface, and the driver layer includes a plurality of drivers to drive the graphics card. The host computer is configured for storing chip data of a scaler chip (260) of the liquid crystal display device, reading and writing the scaler chip via the graphics card, and displaying corresponding chip data on the liquid crystal display device via the graphical user interface such that the corresponding chip data can be revised in a debugging process of the liquid crystal display device.
Abstract:
An exemplary testing system for liquid crystal displays includes a host (1) and a liquid crystal display (2). The host includes a display card (10) having a memory (105). Plural reference data according to a plurality of timing control modes are stored in the memory. The display card controls the liquid crystal display to display testing images by transmitting horizontal synchronization signals, vertical synchronization signals, red signals, green signals, and blue signals to the liquid crystal display using one of the timing control modes.
Abstract:
A Global Positioning System (GPS) system comprises a user end, a mobile terminal, a positioning server, a GPS application server, and a base station network. The mobile terminal has a GPS receiver to receive GPS information from a plurality of GPS satellites. The positioning server is coupled to the user end through the network. The GPS application server is coupled to the network for communicating with the positioning server, and has a GPS receiver to receive GPS information from GPS satellites so as to calculate a position of the GPS application server. The geographic position of the GPS application server is known, and GPS assistant information is determined based on the calculated position and the geographic position of the GPS application server. The base station network communicates with the mobile terminal to obtain the GPS information of the mobile terminal and locate the mobile terminal based on the GPS information of the mobile terminal and the GPS assistant information.