Abstract:
A catalyst is prepared by heating the reaction product of CrO.sub.3 and tert-butyl alcohol as catalyst precursor in a hydrocarbon medium in the presence of hydrogen sulfide to convert the catalyst precursor to a solid chromium-containing catalyst. Hydroconversion processes utilizing the catalyst to convert oil, coal, and mixtures thereof are also provided.
Abstract:
Carbonaceous feeds such as hydrocarbonaceous oils and coal are hydroconverted in the presence of a combination of a hydrogen halide and a metal-containing catalyst produced in situ in the feed. The hydrogen halide is present in an amount to provide from about 0.1 to 20 moles of hydrogen halide per atom of the metal constituent of the catalyst to increase the activity of the catalyst.
Abstract:
In the hydroconversion of carbonaceous materials such as hydrocarbonaceous oils and coal or mixtures thereof, in which inorganic poly acids comprising molybdenum or tungsten or salts thereof are used as catalyst precursors which are converted to catalysts, the use of a combination of phosphoric acid and said poly acids or salts thereof as catalyst precursor wherein the amount of phosphoric acid is such as to provide from about 0.5 to about 3.5 atoms of phosphorus per atom of molybdenum or tungsten results in a catalyst having improved activity.
Abstract:
The present invention relates to the preparation of catalysts for heteroatom removal, particularly sulfur, from petroleum and synthetic fuel feedstocks. The catalyst is comprised of at least one Group VIII metal, and at least one Group VI metal, on a refractory support. The catalyst is prepared by: impregnating an inorganic oxide support material with a Group VI heteropolyacid; treating said impregnated support with an aqueous solution of a reducing agent which is capable of at least partially reducing the Group VI metal of the heteropolyacid; drying said treated support at a temperature from about 20.degree. C. to about 200.degree. C. at about atmospheric pressure; impregnating the treated support with a Group VIII metal salt of an acid having an acidity less than that of the Group VI heteropolyacid; drying said impregnated treated support at a temperature from about 20.degree. C. to about 200.degree. C. at about atmospheric pressure; and sulfiding said impregnated support, thereby forming the catalysts.
Abstract:
A method for preparing a sulfided molybdenum catalyst concentrate which method comprises: (a) forming a precursor catalyst concentrate by mixing together: (i) a hydrocarbonaceous oil comprising constituents boiling above about 1050.degree. F.; (ii) a metal compound, said metal being selected from the group consisting of Groups II, III, IV, V, VIB, VIIB, and VIII of the Periodic Table of the Elements, in an amount to provide from about 0.2 to 2 wt. % metal, based on said hydrocarbonaceous oil; and (iii) elemental sulfur in an amount such that the atomic ratio of sulfur to metal is from about 1/1 to 8/1; and (b) heating the mixture to an effective temperature to produce a catalyst concentrate.
Abstract:
A slurry catalytic hydroconversion process comprising at least two hydroconversion zones is provided in which the heavy hydrocarbonaceous fresh oil feed is added to more than one hydroconversion zone. Additional portions of catalysts or catalyst precursors are also added to the first hydroconversion zone and to additional hydroconversion zones.
Abstract:
Slurry hydroconversion processes utilizing an aqueous solution of phosphomolybdic acid as catalyst precursor, which is subsequently converted to a solid molybdenum-containing catalyst, are improved when the catalyst precursor aqueous solution comprises a specified concentration of molybdenum derived from the phosphomolybdic acid. The improved hydroconversion processes and the improved method of preparing the catalyst are provided.
Abstract:
A carbonaceous feed, such as a heavy hydrocarbonaceous oil or coal, and mixtures thereof, is upgraded by a combination coking and catalytic slurry hydroconversion process in which a catalyst precursor is added to the feed of the hydroconversion zone as a catalyst precursor concentrate prepared from a virgin hydrocarbonaceous oil and a thermally decomposable or oil dispersible metal compound.
Abstract:
A slurry hydroconversion process is provided in which a carbonaceous chargestock such as a hydrocarbonaceous oil or coal comprising a catalyst containing vanadium or molybdenum or mixtures thereof, is converted to a hydroconverted oil product. A heavy oil portion comprising metal-containing solids is separated from the oil product and partially gasified to produce a carbon-free metal-containing ash which is extracted with oxalic acid. The resulting metal-containing oxalic acid extract is recycled to the hydroconversion zone as catalyst precursor.
Abstract:
A catalyst is provided which comprises a composition comprising a catalytic metal component, carbon and hydrogen deposited on a low surface area aluminum alloy powder support prepared by atomizing the metal alloy. Hydrocarbon treating and conversion processes utilizing the catalyst are also provided. The catalyst is particularly suitable for slurry processes.