Abstract:
A fuel pump is used for supplying fuel from a fuel tank to an automotive engine. The fuel pump includes a pump housing having an inlet end for receiving fuel from the fuel tank. A brushless DC motor is positioned within the pump housing and includes a rotatable rotor having magnets therein and a central aperture formed through the rotor. A plastic helical-shaped impeller is positioned within the central aperture for rotation with the rotor about a central axis for pumping fuel through the housing to the engine. The impeller has a plurality of vane blades with blade tips secured to the rotor to prevent tip losses. Each vane blade has a leading edge configured to generate laminar fluid flow and reduce vapor generation at the inlet end of the impeller.
Abstract:
A dual outlet washer pump for an automotive vehicle to alternately supply a stream of washer fluid to separate locations has a valve element with a frame portion surrounding a flat, flexible membrane mounted in vertically plainer fashion in a discharge section, which is movable from a center position unobstructing either of a pair of discharge ports to a first position in which fluid flow from a pumping chamber enters a first discharge side of the discharge section to directly impact a first side of the membrane causing flexure thereof away from the first discharge port to fluid flow there through and can currently causes contact of a second side of the membrane within an inner, lateral side of the discharge section adjacent the second discharge port to block fluid flow there through, the membrane opening the second discharge port and closing the first discharge port in the like manner when an impeller pump is rotated in a counter direction.
Abstract:
An electric-operated fuel pump (20) has a vaned impeller (28, 28') that is disposed within a pumping chamber (27) for rotation about an axis (21). The pumping chamber has a main channel (42) extending arcuately about the axis to one axial side of the impeller. The main channel has a radially outer margin that opens (58) along at least a portion of the channel's arcuate extent to an adjoining contaminant collection channel (56) which extends arcuately about the axis and which is effective, as the pumping element rotates, to collect certain fluid-entrained particulates expelled from the main channel and to convey such collected particulates toward the pump outlet (40). A sump (72) is disposed at the end of the contaminant collection channel proximate the outlet. The impeller (28') has a ring (70) girdling the impeller vanes (52) with a radially inner surface that is slightly concave in axial cross section.
Abstract:
A fuel pump (10) has a housing (12) which houses a motor (14) with a shaft (16) extending therefrom and an impeller (18) fitted thereupon for pumping fuel from a fuel tank to an internal combustion engine. The impeller (18) has a plurality of radially extending curved vanes (30) on an outer circumference (34) separated by a plurality of partitions (32) interposed between the vanes (30), the vanes (30) and partitions (32) defining a plurality of partly elliptical vane grooves (50). The vanes (30) are convexly curved in the direction of rotation (40) and have an obtuse inlet angle (.theta..sub.1) and an acute outlet angle (.theta..sub.2).
Abstract:
A fuel pump has a motor which rotates a shaft with an impeller fitted thereon for pumping fuel within a pumping chamber comprised of semi-elliptically shaped flow channels formed in a pump cover and a pump bottom which encase the impeller. Primary vortices developed by the rotary pumping action of the impeller closely approximate the shape of the pumping chamber thus minimizing secondary counterflowing vortices with their attendant decrease in pump efficiency. An alternative design is the special case of an ellipse where the major axis and the minor axis of the ellipse have equal lengths such that the pumping chamber has semi-circular shaped flow channels.
Abstract:
An automotive fuel pump has a pump housing encasing a rotary pumping element which forms two non-communicating chambers comprising an inlet chamber in communication with a fuel inlet and an outlet pumping chamber in communication with a fuel outlet. The rotary pumping element has a ring portion along an outer circumference, a plurality of vanes around an inner circumference radially inward of the ring portion, and a plurality of axially extending fuel flow passages located radially between the plurality of vanes and the ring portion. Fuel passes from the fuel inlet to the outlet pumping chamber and from the inlet pumping chamber to the fuel outlet through the fuel flow passages in the rotary pumping element.
Abstract:
A system of alternate hose line bundling allows for exclusion of a higher pressure hose line from fasteners directly attached to a vehicle body. Alternatively to mounting to the vehicle body, the higher pressure hose line is coupled to a lower pressure hose line via fasteners which lack mounting features. Eliminating attachment of higher pressure hose lines to the vehicle body reduces noise, vibration, and harshness (NVH) experienced by passengers in the vehicle.
Abstract:
A system of alternate hose line bundling allows for exclusion of a higher pressure hose line from fasteners directly attached to a vehicle body. Alternatively to mounting to the vehicle body, the higher pressure hose line is coupled to a lower pressure hose line via fasteners which lack mounting features. Eliminating attachment of higher pressure hose lines to the vehicle body reduces noise, vibration, and harshness (NVH) experienced by passengers in the vehicle.
Abstract:
The present invention provides a fuel delivery system for a saddle fuel tank wherein a fuel pump and a jet pump are positioned within an active side of the tank. The jet pump is directly driven by the fuel pump to draw the fuel from a passive side of the tank to the active side of the tank.
Abstract:
A regenerative fuel pump comprising a housing, a pump cover having a first flow channel formed therein, a pump body having a second flow channel formed therein whereby the first flow channel and the second flow channel define a pumping chamber, and an impeller mounted between the pump cover and pump body and including a plurality of vanes spaced circumferentially about the impeller and defining a plurality of vane grooves. The vanes are spaced un-evenly in a non-repeating pattern about the impeller. The first and second flow channels each include an inlet end, an outlet end, and a stripper area defined as the area between the inlet end and the outlet end extending from the inlet end away from the flow channel. Each of the stripper areas including a plurality of grooves formed therein adapted to dampen pressure pulsations within the pumping chamber.