Abstract:
Various systems and methods for network management are disclosed. In one embodiment, a network management system comprises a receiver for receiving data from a plurality of entities, including base stations and/or subscriber handsets, a processor for generating a network map or a recommendation based on the received data, a display device for displaying the network map or recommendation, and a transmitter for transmitting instructions based on the recommendation.
Abstract:
Techniques for selecting and processing signals from different stations in a wireless network are described. A destination station may receive a direct signal from a source station and at least one relay signal from at least one relay station. The destination station may determine metrics for the source and relay stations, e.g., based on pilots received from these stations. The destination station may select at least one signal to process from among the direct and relay signals based on the metrics for the source and relay stations. The destination station may select the direct signal if the metric for the source station exceeds a threshold. The destination station may select the relay signal from each relay station having a metric exceeding at least one threshold. The destination station may process the at least one selected signal to recover a transmission sent by the source station to the destination station.
Abstract:
Providing for fair resource sharing among wireless nodes in a wireless communication environment is described herein. By way of example, fairness can comprise establishing a set of resource sharing credits for wireless nodes. By expending credits, a node can borrow a resource of another node, to enable or enhance operation of the borrowing node. Credits for the borrowing node are decreased based on consumption of a shared resource, or credits for the lending node are increased based on such consumption, or both. Once an amount of credits expires, a node can be restricted from borrowing further resources until enough resources are lent to build up a suitable amount of credits. Accordingly, fairness can comprise correlating shared resource consumption with shared resource provisioning, to encourage participation in cooperative wireless communications.
Abstract:
An array-based ion storage system includes an ion generation section, and an ion storage section having a first end electrode coupled to the ion generation section and having multiple holes, a second end electrode having multiple holes, an intermediate electrode having multiple holes, a first insulator formed as a ring between the first end electrode and the intermediate electrode, and a second insulator formed as a ring between the intermediate electrode and the second end electrode. The ion storage section can be made thinner to facilitate consistency in ion extraction and reduce the spread of an ion mobility spectrum peak. The insulators have a big hole, and the ions cannot bump onto the insulation material during ion vibration or thermal movement in the storage space. Therefore, charge transfer and accumulation at the insulator and the subsequent discharge will not occur, suppressing instability of storage and loss of ions.
Abstract:
Techniques for supporting relay communication with subframe staggering are described. For subframe staggering, subframes of different relays are staggered from one another, which can increase the number of potential backhaul subframes. In one design, a first relay determines its access subframes and backhaul subframes, which correspond to different non-overlapping subsets of the subframes of the first relay. The first relay communicates with at least one UE during the access subframes and communicates with a base station during the backhaul subframes. The subframes of the first relay are offset from the subframes of a second relay communicating with the base station. In one design, the access subframes of the first relay includes all subframes with either even or odd indices, which can support data transmission with HARQ. In one design, at least one access subframe corresponds to at least one reserved subframe having reduced transmit power from the base station.
Abstract:
Methods and apparatuses are provided that facilitate associating with relays in a wireless network. A device can select whether to utilize relay assistance where present based at least in part on measuring one or more determined or projected parameters related to the relay. Where utilizing a relay results in user-plane data channel conditions above a threshold level and control channel conditions below a threshold level, a serving base station can determine whether to employ another base station to serve the device, jointly serve a relay with an additional base station, and/or the like.
Abstract:
An ion mobility spectrometer comprises an electrode and two storage electrodes disposed at the two opposite sides of the electrode respectively. Ions from an intermediate part between the two storage electrodes are stored and the stored ions are released from the storage electrodes by changing electric potentials of the two storage electrodes. The present invention further discloses a detecting method using an ion mobility spectrometer.
Abstract:
Disclosed is an ion gate for a dual IMS and method. The ion gate includes an ion source, a first gate electrode placed on one side of the ion source, a second gate electrode placed on the other side of the ion source, a third gate electrode placed on the side of the first gate electrode away from the ion source, a fourth gate electrode placed on the side of the second gate electrode away from the ion source, wherein during the ion storage, the potential at the position on the tube axis of the ion gate corresponding to the first gate electrode is different from the potentials at the positions on the tube axis corresponding to the ion source and the third gate electrode, and the potential at the position on the tube axis corresponding to the second gate electrode is different from the potentials at the positions on the tube axis corresponding to the ion source and the fourth gate electrode. According to the present invention, after sample gas enters the ion gates, charge exchange with reaction ions occurs between the first gate electrode and the second electrode, and positive and negative ions are continuously stored into the storage regions for the positive and negative ions. This leads to an improvement of utility rate of ions. Then, the ions are educed in a step-wise manner from the storage regions for the positive and negative ions by a simple control of a combination of the electrodes.
Abstract:
Techniques for managing candidate sets for a user equipment (UE) are described. In an aspect, multiple candidate sets of cells of different classes may be maintained for the UE. Each candidate set may include cells of a particular class. As some examples, the multiple candidate sets may be for cells of different transmit power levels, cells of different association types, cells associated with different resources, etc. The multiple candidate sets may be maintained separately based on applicable criteria and rules. The multiple candidate sets may be used to select a serving cell for the UE and/or for other communication purposes for the UE. In another aspect, one or more candidate sets may be maintained for the UE and may be used for multiple communication purposes for the UE. The multiple communication purposes may include server selection, interference management, measurement reporting, etc.
Abstract:
Techniques for selecting and processing signals from different stations in a wireless network are described. A destination station may receive a direct signal from a source station and at least one relay signal from at least one relay station. The destination station may determine metrics for the source and relay stations, e.g., based on pilots received from these stations. The destination station may select at least one signal to process from among the direct and relay signals based on the metrics for the source and relay stations. The destination station may select the direct signal if the metric for the source station exceeds a threshold. The destination station may select the relay signal from each relay station having a metric exceeding at least one threshold. The destination station may process the at least one selected signal to recover a transmission sent by the source station to the destination station.