Abstract:
A fluid filter such as an oil filter for a vehicle is provided. The fluid filter includes a body having a first, closed end and a second, open end. A plate is coupled to the second end, the plate having a first surface and a threaded portion having a thread pitch. A channel member has an outer edge coupled to the second end of the body, wherein the channel member defines a recess with an open side opposite the first surface of the plate. A stop member is disposed within the recess of the channel member, the stop member having a first height. A sealing member is coupled to the stop member, and the sealing member has a second height greater than the first height of the stop member.
Abstract:
An additive carrier for a spin-on filter is provided. The additive carrier is positioned at an upstream side of the filter and includes a basket defining an annular body. The annular body includes a concentric opening extending therethrough, a circumferentially extending recess configured to receive and store an additive material and a plurality of flanges extending radially within the recess, the flanges spaced apart in a circumferential direction of the recess to form a plurality of sub-recesses.
Abstract:
A system for testing an insulative material for a spark plug comprises a test spark plug having at least a center electrode and an insulator comprised of an insulative material surrounding at least a portion of the center electrode, wherein the insulator has an end that is closed, whereby the closed end of the insulator encloses an end of the center electrode. The system may further include a test engine that simulates engine conditions, wherein a conventional spark plug is installed in a first ignition port of the test engine and the test spark plug is installed in a second ignition portion of the test engine and a control system for controlling ignition signals to the test spark plug and the conventional spark plug.
Abstract:
A spark plug is provided. The spark plug has an insulative sleeve with a central axial bore and an exterior surface of a shaped tip portion. A coating is disposed on the exterior surface of the shaped tip portion and the coating comprises a transition metal compound or a combination of transition metal compounds, and an alkali metal compound. A center electrode extends through the central axial bore of the insulative sleeve. A metal sleeve is provided, wherein the insulating sleeve is positioned within, and secured to the metal shell. A ground electrode is coupled to the metal shell and positioned in a spaced relationship relative to the center electrode so as to define a spark gap.
Abstract:
A method of manufacturing an insulator for a spark plug comprises the steps of combining at least two raw materials to form a powdered insulator formulation, spray drying the powdered insulator formulation, and pressing the powdered insulator formulation to create an insulator blank. The method further includes the steps of bisque firing the insulator blank, grinding the bisque fired insulator blank to form the insulator, and sintering the insulator.
Abstract:
A method of applying indicia to an item having a textured surface is disclosed herein, the method including the steps of: applying a textured paint to an exterior surface of the item; and applying the indicia to the exterior surface by an offset printing process. Also disclosed herein is a fluid filter having: a housing having an exterior surface; a textured paint applied to the exterior surface; and indicia applied to the textured paint, wherein the indicia is applied by an offset printing process.
Abstract:
A spark plug is provided having a resistor. The resistor is made from resistor glass material containing an alkali free barium alumino-silicate glass mixed with mullite. In one embodiment, the resistor is a 15 to 30 wt % alkali free barium alumino-silicate glass and 10 to 25 wt % mullite. The resistor material provides for a greater processing kiln temperature range with reduced resistor variability and improved durability performance.
Abstract:
A spark plug is provided. The spark plug has an insulative sleeve with a central axial bore and an exterior surface of a shaped tip portion. A coating is disposed on the exterior surface of the shaped tip portion and the coating comprises a transition metal compound or a combination of transition metal compounds, and an alkali metal compound. A center electrode extends through the central axial bore of the insulative sleeve. A metal sleeve is provided, wherein the insulating sleeve is positioned within, and secured to the metal shell. A ground electrode is coupled to the metal shell and positioned in a spaced relationship relative to the center electrode so as to define a spark gap.
Abstract:
An insulator for a spark plug is provided having an insulator tip. The insulator tip includes a feature extending radially inward from an exterior surface of the insulator tip.
Abstract:
A spark plug is provided that ensures that a ground electrode is positioned in a predefined, precise orientation when installed in a spark plug hole of an engine head. The spark plug is configured for axial insertion into the plug hole, and has a non-axisymmetric ground shield that fits into the plug hole, wherein the ground shield has an outer shield surface with a non-axisymmetric shape and the plug hole is also provided with a complementary non-axisymmetric shape. The spark plug includes a central insulator, which has an inner end surrounding a central electrode and supporting the ground shield, which is mounted on the insulator to support a ground strap adjacent the electrode for forming a spark therebetween. The insulator and ground shield are axially slidable into the plug hole, and the spark plug includes a jamb nut which is rotatable to fix the spark plug in position in a predefined orientation. Preferably, an outer surface of the insulator and an inner surface of the ground shield have complementary shapes wherein the ground shield fits closely on the insulator. For example, the outer insulator surface and the inner shield surface may have a complementary axisymmetric shape, such as cylindrical, or a non-axisymmetric shape, which may conform to the non-axisymmetric shape of the outer shield surface.