Abstract:
A backlight unit and a display device including the backlight unit are provided. The backlight unit includes at least one light source unit and a light guide plate. The light source unit provides collimated light and controls light such that it is emitted in a plurality of light exit directions.
Abstract:
Disclosed are a method for fabricating a quantum dot. The method includes the steps of (a) preparing a compound semiconductor layer including a quantum well structure formed by sequentially stacking a first barrier layer, a well layer and a second barrier layer; (b) forming a dielectric thin film pattern including a first dielectric thin film having a thermal expansion coefficient higher than a thermal expansion coefficient of the second barrier layer and a second dielectric thin film having a thermal expansion coefficient lower than the thermal expansion coefficient of the second barrier layer on the second barrier layer; and (c) heat-treating the compound semiconductor layer formed thereon with the dielectric thin film pattern to cause an intermixing between elements of the well layer and elements of the barrier layers at a region of the compound semiconductor layer under the second dielectric thin film.
Abstract:
A changeable liquid lens array and a method of manufacturing the same. The changeable liquid lens array includes a substrate, a plurality of partition walls arrayed on the substrate and having a fluid travel path, cells defined by the plurality of partition walls, a first fluid comprised in the cells, a second fluid arranged on the first fluid, a first electrode arranged on at least one side surface of each of the partition walls, and a second electrode disposed to be separate from the partition walls. A shape of shape of an interface between the first fluid and the second fluid changes based on a voltage that is applied to the first electrode and the second electrode.
Abstract:
A spatial light modulator includes a first transparent substrate; a second transparent substrate; a phase modulation unit disposed between the first transparent substrate and the second transparent substrate and configured to modulate a phase of light passing through the phase modulation unit by changing an optical path length of the phase modulation unit according to a voltage applied to the phase modulation unit; and an amplitude modulation unit disposed between the first transparent substrate and the second transparent substrate and configured to modulate an amplitude of light passing through the amplitude modulation unit according to a voltage applied to the amplitude modulation unit.
Abstract:
A light guide plate includes a plurality of quantum dots on at least one of a surface of the light guide plate and inside the light guide plate, wherein the plurality of quantum dots emit light having a different wavelength than a light incident thereto.
Abstract:
A display apparatus includes a light guide plate to emit light that enters through a side surface of the light guide plate through an upper surface of the light guide plate, a light source arranged on at least one side of the light guide plate, a reflection plate arranged under the light guide plate, a color filter layer arranged above the light guide plate, and an optical shutter arranged above the color filter layer to transmit or block at least a part of light according to electric control, wherein the color filter layer includes a transmission type color filter to transmit light in a particular wavelength band and reflect light in other wavelength bands.
Abstract:
A backlight unit and a display device including the backlight unit are provided. The backlight unit includes at least one light source unit and a light guide plate. The light source unit provides collimated light and controls light such that it is emitted in a plurality of light exit directions.
Abstract:
A holographic light guide plate has a transparent substrate and a plurality of diffraction patterns formed thereon. The diffraction patterns are arranged on one of a top surface and a bottom surface of the transparent substrate. The diffraction patterns diffract light incident on the transparent substrate. Each of the diffraction patterns has a continuously varying interval.
Abstract:
A multi-touch sensing display apparatus is provided. The multi-touch sensing display apparatus may include a back light unit, a display panel, a sensor unit on a display surface of the display panel, and a touch light source unit providing light to be diffused by a touch of a user so that the sensor unit senses the touch of the user. The touch light source unit may include a touch light source and a transparent light guide plate. The transparent light guide plate may include a light guiding unit and a plurality of light emitting units integrally formed with each other as a single body, wherein the light guiding unit guides light from the touch light source to an inside thereof, and the plurality of light emitting units protrudes from the light guiding unit and emits light from the light guiding unit.
Abstract:
A light guide plate includes a plurality of quantum dots on at least one of a surface of the light guide plate and inside the light guide plate, wherein the plurality of quantum dots emit light having a different wavelength than a light incident thereto.