Abstract:
A nozzle includes a center body and a shroud surrounding the center body to define an annular passage. An arcuate annular guide extending from a point radially inward of the shroud to a point radially outward of the shroud defines a first airflow between the arcuate annular guide and the shroud and a second airflow between the arcuate annular guide and the center body.
Abstract:
A system includes an air flow conditioner configured to mount in an air chamber separated from a combustion chamber of a turbine combustor. The air flow conditioner comprises a perforated annular wall configured to direct an air flow in both an axial direction and a radial direction relative to an axis of the turbine combustor. In addition, the air flow conditioner is configured to uniformly supply the air flow into air inlets of one or more fuel nozzles.
Abstract:
A fin apparatus including a corrugated strip of material having, a first lower planar surface, a second lower planar surface, a first upper planar surface corresponding to the first lower planar surface and the second lower planar surface, wherein the first lower planar surface and the second lower planar surface are operative to be attached to a surface of a component, and a first fin portion connecting the first lower planar surface to the first upper planar surface.
Abstract:
Disclosed is a combustor including a baffle plate having at least one through baffle hole and at least one fuel nozzle extending through the at least one baffle hole. At least one shroud is secured to the baffle plate and includes at least one piston ring disposed at the shroud. The at least one piston ring is configured to meter a flow of diluent between the at least one shroud and the at least one fuel nozzle. Further disclosed is a method for providing diluent to a combustor including providing a piston ring gap defined by at least one piston ring disposed at a baffle plate and a fuel nozzle extending through a through hole in the baffle plate. The diluent is flowed through the piston ring gap toward at least one airflow hole in the fuel nozzle.
Abstract:
A power generation system capable of eliminating NO, components in the exhaust gas by using a 3-way catalyst, comprising a gas compressor to increase the pressure of ambient air fed to the system; a combustor capable of oxidizing a mixture of fuel and compressed air to generate an expanded, high temperature exhaust gas; a gas turbine engine that uses the force of the high temperature gas; an exhaust gas recycle (EGR) stream back to the combustor; a 3-way catalytic reactor downstream of the gas turbine engine outlet which treats the exhaust gas stream to remove substantially all of the NOx components; a heat recovery steam generator (HRSG); an EGR compressor; and an electrical generator.
Abstract:
A cooling circuit of a gas turbine passes an airflow through a combustor section that includes a plurality of mixing tubes for transporting a fuel/air mixture and a perforated plate including a plurality of impingement holes and a plurality of tube holes for accommodating the mixing tubes. The tube holes and the mixing tubes form a plurality of annulus areas between the perforated plate and the mixing tubes. The impingement holes and the annulus areas are configured to pass the airflow through the perforated plate. A flow management device modifies an effective size of the annulus areas to control a distribution of the airflow through the impingement holes and the annulus areas of the perforated plate to enhance cooling efficiency.
Abstract:
A reformer for use in a gas turbine engine specially configured to treat a supplemental fuel feed to the combustor that includes a reformer core containing a catalyst composition and an inlet flow channel for transporting the reformer fuel mixture, air and steam (either saturated or superheated) into a reformer core. An outlet flow channel transports the resulting reformate stream containing reformed and thermally cracked hydrocarbons and substantial amounts of hydrogen out of the reformer core for later combination with the main combustor feed. Because the catalytic partial oxidation reaction in the reformer is highly exothermic, the additional heat is transferred (and thermally integrated) using one or more heat exchange units for a first and/or second auxiliary gas turbine fuel stream that undergo thermal cracking and vaporization before combining with the reformate. The combined, hydrogen-enriched feed significantly improves combustor performance.
Abstract:
A nozzle includes a fuel plenum and an air plenum downstream of the fuel plenum. A primary fuel channel includes an inlet in fluid communication with the fuel plenum and a primary air port in fluid communication with the air plenum. Secondary fuel channels radially outward of the primary fuel channel include a secondary fuel port in fluid communication with the fuel plenum. A shroud circumferentially surrounds the secondary fuel channels. A method for mixing fuel and air in a nozzle prior to combustion includes flowing fuel to a fuel plenum and flowing air to an air plenum downstream of the fuel plenum. The method further includes injecting fuel from the fuel plenum through a primary fuel passage, injecting fuel from the fuel plenum through secondary fuel passages, and injecting air from the air plenum through the primary fuel passage.
Abstract:
Optical flame holding and flashback detection systems and methods are provided. Exemplary embodiments include a combustor including a combustor housing defining a combustion chamber having combustion zones, flame detectors disposed on the combustor housing and in optical communication with the combustion chamber, wherein each of the flame detectors is configured to detect an optical property related to one or more of the combustion zones.
Abstract:
A fuel injection assembly for use in a turbine engine is provided. The fuel injection assembly includes an end cover, an endcap assembly, a fluid supply chamber, and a plurality of tube assemblies positioned at the endcap assembly. Each of the tube assemblies includes a housing having a fuel plenum and a cooling fluid plenum defined therein, the cooling fluid plenum downstream from the fuel plenum and separated therefrom by an intermediate wall, a plurality of tubes extending through the housing, each of the plurality of tubes in flow communication with the fluid supply chamber and a combustion chamber downstream from the tube assembly, and an aft plate at a downstream end of the cooling fluid plenum, the aft plate including at least one aperture defined therethrough. The fuel injection assembly further includes at least one fuel delivery pipe coupled to at least one of the plurality of tube assemblies.