摘要:
An integrated turbomachine oxygen plant includes a turbomachine and an air separation unit. One or more compressor pathways flow compressed air from a compressor through one or more of a combustor and a turbine expander to cool the combustor and/or the turbine expander. An air separation unit is operably connected to the one or more compressor pathways and is configured to separate the compressed air into oxygen and oxygen-depleted air. A method of air separation in an integrated turbomachine oxygen plant includes compressing a flow of air in a compressor of a turbomachine. The compressed flow of air is flowed through one or more of a combustor and a turbine expander of the turbomachine to cool the combustor and/or the turbine expander. The compressed flow of air is directed to an air separation unit and is separated into oxygen and oxygen-depleted air.
摘要:
An integrated turbomachine plant is provided and includes a combustor a turbomachine operably connected to the combustor and including a compressor and a turbine expander, a pathway to flow compressed air from the compressor through the turbine expander to heat the compressed air, an additional pathway by which high temperature fluids output from the turbomachine are employed to heat the compressed air and an air separation unit operably connected to the pathway and configured to separate the heated compressed air into oxygen and oxygen-depleted air.
摘要:
Systems are disclosed herein for enhancing energy usage while pressurizing a carbonaceous gas. Such systems include a carbon dioxide (CO2) liquefaction system. The CO2 liquefaction system includes a first cooling system capable of cooling a CO2 gas to liquefy greater than approximately 50 percent of the CO2 gas. The first cooling system produces a first CO2 liquid. The CO2 gas pressure is less than approximately 3450 kilopascals (500 pounds per square inch absolute).
摘要:
An integrated turbomachine oxygen plant includes a turbomachine and an air separation unit. One or more compressor pathways flow compressed air from a compressor through one or more of a combustor and a turbine expander to cool the combustor and/or the turbine expander. An air separation unit is operably connected to the one or more compressor pathways and is configured to separate the compressed air into oxygen and oxygen-depleted air. A method of air separation in an integrated turbomachine oxygen plant includes compressing a flow of air in a compressor of a turbomachine. The compressed flow of air is flowed through one or more of a combustor and a turbine expander of the turbomachine to cool the combustor and/or the turbine expander. The compressed flow of air is directed to an air separation unit and is separated into oxygen and oxygen-depleted air.
摘要:
In one embodiment, a compressor discharge casing of a gas turbine engine is designed to receive discharge air from a compressor and to direct a first portion of the discharge air into a combustor of the gas turbine engine and a second portion of the discharge air into a nozzle assembly of a gas turbine to cool components of the gas turbine. A heat transfer device is configured to receive a cooling fluid and to cool the second portion of the discharge air with the cooling fluid.
摘要:
An integrated gasification combined cycle plant is combined with a Kalina bottoming cycle. High thermal energy streams 31, 69, 169 from the gasification system are provided in heat exchange relation with the two component working fluid mixture at appropriate locations along the Kalina bottoming cycle units to supplement the thermal energy from the gas turbine exhaust 28 which heats the working fluid supplied to the vapor turbines. Particularly, low temperature heat recovery fluid from the low temperature cooling section 50b of the gasification system lies in heat exchange relation 27 with the condensed working fluid from the distillation/condensation sub-system of the Kalina cycle to preheat the working fluid prior to entry into the heat recovery vapor generator 12. Heat recovery fluid from the high temperature gas cooling section 50a of the gasification system is placed in heat exchange relation 23 and 65 with the working fluid at an intermediate location along the heat recovery vapor generator 12. By supplementing the heat of the gas turbine exhaust with available heat from the gasification system, and optimal integration, increased power output and improved efficiency are obtained.
摘要:
A power generation system capable of eliminating NOxcomponents in the exhaust gas by using a 3-way catalyst, comprising a gas compressor to increase the pressure of ambient air fed to the system; a combustor capable of oxidizing a mixture of fuel and compressed air to generate an expanded, high temperature exhaust gas; a turbine that uses the force of the high temperature gas; an exhaust gas recycle (EGR) stream back to the combustor; a 3-way catalytic reactor downstream of the gas turbine engine outlet which treats the exhaust gas stream to remove substantially all of the NOx components; a heat recovery steam generator (HRSG); an EGR compressor feeding gas to the combustor and turbine; and an electrical generator.
摘要:
A power plant is provided and includes a gas turbine engine having a combustor in which compressed gas and fuel are mixed and combusted, first and second supply lines respectively coupled to the combustor and respectively configured to supply the compressed gas and the fuel to the combustor and an exhaust gas recirculation (EGR) system to re-circulate exhaust gas produced by the gas turbine engine toward the combustor. The EGR system is coupled to the first and second supply lines and configured to combine first and second portions of the re-circulated exhaust gas with the compressed gas and the fuel at the first and second supply lines, respectively.
摘要:
A system for capturing carbon dioxide from a shifted syngas is disclosed. The system may generally include a solid sorbent configured to absorb carbon dioxide at a first temperature and release carbon dioxide at a second temperature. In addition, the system may include an absorption chamber configured to receive the shifted syngas at the first temperature and a regeneration chamber separate from the absorption chamber. The regeneration chamber may be maintained at the second temperature. The solid sorbent may be cycled between the absorption chamber and the regeneration chamber such that carbon dioxide from the shifted syngas is absorbed within the absorption chamber to produce a decarbonized fuel gas and released within the regeneration chamber to produce a carbon dioxide stream.
摘要:
In a system involving CO2 capture having an acid gas removal system to selectively remove CO2 from shifted syngas, the acid gas removal system including at least one stage, e.g. a flash tank, for CO2 removal from an input stream of dissolved carbon dioxide in physical solvent, the method of recovering CO2 in the acid gas removal system including: elevating a pressure of the stream of dissolved carbon dioxide in physical solvent; and elevating the temperature of the pressurized stream upstream of at least one CO2 removal stage.