Abstract:
A motor driving circuit for adjusting speed of the motor by changing output voltage is disclosed. One end of the motor is coupled to a variable voltage source. The motor driving circuit includes a motor-driving unit, a control unit and a determining unit. The motor-driving unit includes a first end coupled to another end of the motor, a second end coupled to a ground and a third end, and is utilized for driving the motor. The control unit is utilized for controlling the voltage between the first end and the third end of the motor-driving unit. The determining unit is coupled between the variable voltage source and the control unit, and is utilized for controlling the control unit to adjust the voltage between the first end and the third end of the motor-driving unit according to magnitude of the voltage of the variable voltage source.
Abstract:
A driving circuit for switching DC power includes a DC power generator, a bridge circuit, a control signal generator, and a clamping module. The bridge circuit includes a plurality of legs each including an up-bridge switch and a down-bridge switch. The clamping circuit is coupled to each up-bridge switch of the bridge circuit for clamping voltage of an input end of the up-bridge switch.
Abstract:
A motor driving circuit for driving a motor includes: a driving-stage circuit, for converting an input voltage into a first output voltage and a second output voltage, and comprising a first transistor, a second transistor, a third transistor and a fourth transistor; an output stage circuit, for converting the first output voltage or the second output voltage into a motor speed signal; and a control unit, coupled to the first, the second, the third and the fourth transistors and the output stage circuit, for generating first, second, third and fourth transistor control signals to control the first, the second, the third and the fourth transistors respectively.
Abstract:
A driving method for a motor includes sensing variation of magnetic pole of a rotator of the motor, to generate a magnetic pole sensing signal, determining dead zone of the motor according to the magnetic pole sensing signal, to generate a determination result, and adjusting voltage outputted to a coil of the rotator according to the determination result.
Abstract:
A pulse width modulation circuit capable of linearly adjusting duty cycle with voltage, which comprises an input voltage source for generating an input voltage, a regulator for generating a regulated voltage, a first voltage-dividing unit for providing a first divided voltage, a second voltage-dividing unit for providing a second divided voltage, a third voltage-dividing unit for providing a third divided voltage, a voltage adder for adding the first divided voltage and the third divided voltage for generating a high level voltage, a waveform generator for generating an oscillating signal according to the high level voltage and the third divided voltage, and a comparator having a first input terminal coupled to the second voltage-dividing unit, a second terminal coupled to the waveform generator, and an output terminal for comparing the second divided voltage with the oscillating signal to output a pulse width modulation signal through the output terminal.
Abstract:
A driving circuit includes a power supply, an input capacitor, a Hall sensor, a first amplifier, a second amplifier, a full-bridge driver circuit, and a first operational amplifier. The input capacitor is coupled to the power supply. The input end of the first amplifier and the second amplifier is coupled to the output end of the Hall sensor. The control end of the full-bridge driver circuit is coupled to the output end of the first amplifier and the output end of the second amplifier. The first operational amplifier includes a first input end for receiving a first reference voltage and a second input end coupled to the first output end of the full-bridge driver circuit.
Abstract:
A power cutter, an oscillator, a counter, a S-R latch, and a Hall bias are further disposed inside a DC motor driving circuit so that current consumption of the DC motor driving circuit is reduced significantly under a standby mode. When the counter detects that a received pulse width modulation signal stays at a low electrical level over a predetermined time, the counter triggers the S-R latch so as to activate a disabling signal of the power cutter for shutting down most elements until the pulse width modulation signal returns to a high electrical level. With the aid of the built-in Hall bias, space for externally coupling the Hall bias is saved, and moreover, a Hall sensor retrieves a dynamically-adjusted power and currents so that remarkable current consumption is saved under a standby mode.
Abstract:
A driving circuit includes a power supply, an input capacitor, a Hall sensor, a first amplifier, a second amplifier, a full-bridge driver circuit, and a first operational amplifier. The input capacitor is coupled to the power supply. The input end of the first amplifier and the second amplifier is coupled to the output end of the Hall sensor. The control end of the full-bridge driver circuit is coupled to the output end of the first amplifier and the output end of the second amplifier. The first operational amplifier includes a first input end for receiving a first reference voltage and a second input end coupled to the first output end of the full-bridge driver circuit.