Abstract:
A liquid crystal display having electrodes on a single substrate includes a transparent planar electrode elongated in the transverse direction formed on the inner surface of the substrate, and an insulating film is deposited thereon. A plurality of linear electrodes, which are elongated in the longitudinal direction and either transparent or opaque, are formed on the insulating film. When voltages applied, the electric field is symmetrical with respect to the longitudinal central line of the linear electrodes and the longitudinal central line of a region between the linear electrodes, and has parabolic or semi-elliptical lines of force having a center on a boundary line between the planar and the linear electrodes.
Abstract:
A color filter substrate includes a transparent substrate, a light-blocking layer, a color filter layer, a first cell gap maintaining member and a second cell gap maintaining member. The transparent substrate has a plurality of pixel regions. Each of the pixel regions includes first and second regions. The light-blocking layer is disposed over the transparent substrate. The light-blocking layer blocks light that leaks through boundaries of the pixel regions. The color filter layer is disposed over the transparent substrate. The color filter layer has a first thickness at the first region and a second thickness that is smaller than the first thickness at the second region. The first cell gap maintaining member is disposed at the first region. The second cell gap maintaining member is disposed at the second region. Therefore, a height difference between the main column spacer and the sub column spacer may be easily adjusted.
Abstract:
The present invention discloses a novel Polymer-Dispersed Ferroelectric Liquid Crystal Display (PDF LCD). The active matrix LCD such as a TFT LCD, the solution of low response speed of nematic LCD, requires very high production costs. The FLCD utilizing ferroelectric liquid crystal exhibits highly rapid response speed, but results in an unstable structure, difficult fabrication, and incompetency of expressing gray scales. Meanwhile, the PD LCD exhibits a simple structure, wide viewing angle and high strength, but low contrast thereof disqualifies it for image displays. The present invention combines the PD LCD and FLCD, that is, droplets of ferroelectric liquid crystal are dispersed in a polymer matrix to include the merits and compensate for the shortcomings of each. As a result, there is provided a novel PDF LCD having very rapid response speed, resistance to external shock or heat, and high contrast. Moreover, the present PDF LCD does not exhibit bistable characteristics to be able to express gray scales, and thus it is suitable for fabricating large area color image displays.
Abstract:
A tetragonal ring shape aperture is formed in the common electrode on one substrate and a cross shape aperture is formed at the position corresponding to the center of the tetragonal ring shape aperture in the pixel electrode on the other substrate. A liquid crystal layer between two electrodes are divided to four domains where the directors of the liquid crystal layer have different angles when a voltage is applied to the electrodes. The directors in adjacent domains make a right angle. The tetragonal ring shape aperture is broken at midpoint of each side of the tetragon, and the width of the aperture decreases as goes from the bent point to the edge. Wide viewing angle is obtained by four domains where the directors of the liquid crystal layer indicate different directions, disclination is removed and luminance increases.
Abstract:
A liquid crystal display having electrodes on a single substrate. A transparent planar electrode elongated in the transverse direction is formed on the inner surface of a substrate, and an insulating film is deposited thereon. A plurality of linear electrodes, which are elongated in the longitudinal direction and either transparent or opaque, are formed on the insulating film. Potential difference between the planar and the linear electrodes generated by applying voltages to the electrodes yields an electric field. The electric field is symmetrical with respect to the longitudinal central line of the linear electrodes, and has parabolic or semi-elliptical lines of force having a center on a boundary line between the planar and the linear electrodes. The line of force on the planar and the linear electrodes and on the boundary line between the planar and the linear electrodes has the vertical and the horizontal components, and the liquid crystal molecules are re-arranged to have a twist angle and a tilt angle. The polarization of the incident light varies due to the rearrangement of the liquid crystal molecules.
Abstract:
A liquid crystal display includes a gate line formed on a lower substrate, a storage line formed on the lower substrate, and a data line formed on the lower substrate crossing and insulated from the gate line and the storage line. The liquid crystal display also includes a pixel electrode formed on the lower substrate crossing and insulated from the storage line. The pixel electrode has a first aperture pattern. The liquid crystal display further includes a common electrode formed on an upper substrate and having a second aperture pattern, and a storage electrode connected to the storage line. The storage electrode overlaps the second aperture pattern. The storage line, first aperture pattern, and second aperture pattern each includes a straight portion slanting to the gate line. A long axis of a liquid crystal molecule is arranged perpendicular to a substrate when an electric field is not applied.
Abstract:
A liquid crystal display includes a liquid crystal panel, which receives a plurality of gate signals and a plurality of data signals to display an image, a gate driver and a signal supplier which supplies a first scan-start signal, a clock signal and a clock bar signal to the gate driver, the clock bar signal having an inverse phase to that of the clock signal, wherein the clock signal includes a maintenance period and first and second transition periods, the maintenance period is defined when the clock signal is maintained at a first level, the first and second transition periods defined from a point when the clock signal transitions to a second level from the first level and to a subsequent point when the clock signal transitions to the first level from the second level, the first scan-start signal is maintained at the second level during the first transition period.
Abstract:
In a vertically aligned mode LCD, a gate line and a storage line are formed on a substrate in parallel, and a storage electrode and a cover pattern are formed as branches of the storage line. The storage electrode is overlapped with an aperture of a common electrode formed on an upper substrate. The cover pattern is located between a pixel electrode and a data line to prevent a light leakage. Accordingly, an alignment error margin of the upper substrate and the lower substrate is increased, an aperture ratio is enhanced, and repairing the high pixel defect is possible. Further, the light leakage caused by a voltage of the data line is prevented.
Abstract:
A liquid crystal display apparatus includes first and second substrates, a liquid crystal layer, a sealing member, and first and second spacers. The first substrate includes a first display part having a pixel electrode formed thereon. The second substrate includes a second display part having a common electrode. The liquid crystal layer is interposed between the first and second substrates. The seal line includes a liquid crystal inlet. The first spacer is disposed between the first and second display parts. The second spacer is disposed near the liquid crystal inlet. The second and third spacers prevent the cell gap of the liquid crystal inlet from being narrowed, so that a liquid crystal material may be injected easily completely. Thus, the liquid crystal material is completely filled to enhance the display quality.
Abstract:
In a vertically aligned mode LCD, a gate line and a storage line are formed on a substrate in parallel, and a storage electrode and a cover pattern are formed as branches of the storage line. The storage electrode is overlapped with an aperture of a common electrode formed on an upper substrate. The cover pattern is located between a pixel electrode and a data line to prevent a light leakage. Accordingly, an alignment error margin of the upper substrate and the lower substrate is increased, an aperture ratio is enhanced, and repairing the high pixel defect is possible. Further, the light leakage caused by a voltage of the data line is prevented.