Abstract:
A system for restricting spinal flexion includes a compliance member having a body and an elongation limit. The body typically comprises a spring or other tension element which provides elastic constraint to the spinal segment when the compliance member is attached to the spinous processes. The elongation limit prevents overextension of the compliance member, thus reducing the likelihood that the patient will experience over flexion of the spinal segment and reducing the risk of placing excessive mechanical load on the compliance member.
Abstract:
A method for improving shear loading capacity of a spinal segment having a superior vertebra, an inferior vertebra or sacrum, and a facet joint, includes providing a constraint device having an upper portion, a lower portion and a compliance member coupled therebetween. The constraint device is coupled with the spinal segment such that the upper portion of the constraint device is coupled with the superior vertebra and the lower portion of the constraint device is coupled with the inferior vertebra or a sacrum. The constraint device provides a force resistant to flexion of the spinal segment. Also, length or tension in the constraint device is adjusted so as to increase engagement between an upper portion of the facet joint and a lower portion of the facet joint, thereby increasing capacity of the spinal segment to resist shear loading.
Abstract:
An exemplary method for constraining spinous processes to elastically limit flexion of a spinal segment comprises piercing an interspinous ligament to form a first penetration above an upper side of an upper spinous process and advancing a first end of a first tether through the first penetration. The interspinous ligament is pierced again to form a second penetration below a lower side of a lower spinous process and a second end of a second tether is advanced through the second penetration. Joining the first and second tethers together forms an extensible tether structure coupling the upper and lower spinous processes together while permitting extension therebetween. Adjusting the tether structure sets relative distance or angle between the upper and lower spinous processes to a target value.
Abstract:
A method for improving shear loading capacity of a spinal segment having a superior vertebra, an inferior vertebra or sacrum, and a facet joint, includes providing a constraint device having an upper portion, a lower portion and a compliance member coupled therebetween. The constraint device is coupled with the spinal segment such that the upper portion of the constraint device is coupled with the superior vertebra and the lower portion of the constraint device is coupled with the inferior vertebra or a sacrum. The constraint device provides a force resistant to flexion of the spinal segment. Also, length or tension in the constraint device is adjusted so as to increase engagement between an upper portion of the facet joint and a lower portion of the facet joint, thereby increasing capacity of the spinal segment to resist shear loading.
Abstract:
Spinal implants for limiting flexion of the spine are implanted between a superior spinous process and an inferior spinous process or sacrum. The implants include upper straps which are placed over the upper spinous process, while the lower portions of the implant are attached to the adjacent vertebra or sacrum. The attachments may be fixed, for example using screws or other anchors, or may be non-fixed, for example by placing a loop strap through a hole in the spinous process or sacrum.
Abstract:
A spinal treatment system includes a constraint device having an upper tether portion, a lower tether portion and a compliance member coupled therebetween. The upper tether portion is coupled with a superior spinous process of a spinal segment in a patient and the lower tether portion is coupled with an inferior spinous process or sacrum of the spinal segment. The length or tension in the constraint device is adjustable so that the construct of the tether portions and the compliance member provides a force resistant to flexion of the spinal segment. The system also includes a first prosthesis coupled with the spinal segment, wherein the constraint device modulates loads borne by the prosthesis or by tissue adjacent thereto.
Abstract:
A system for restricting flexion of a spinal segment in a patient comprises a constraint device having a tether structure and a compliance member coupled with the tether structure. The tether structure is adapted to be coupled with a superior spinous process and a sacrum. The system also includes an anchor member that is anchored to the sacrum. The anchor member has an attachment feature that is adapted to couple with the constraint device.
Abstract:
A system for restricting spinal flexion includes superior and inferior tether structures joined by a pair of compliance members. Compliance members comprise tension members which apply a relatively low elastic tension on the tether structures. By placing the tether structures on or over adjacent spinous processes, flexion of a spinal segment can be controlled in order to reduce pain.
Abstract:
Methods, apparatus and systems for constraining spinous processes to elastically limit flexion of two or more adjacent spinal segments rely on placing a tether structure over at least three adjacent vertebral bodies or two adjacent vertebral bodies and the sacrum. The tether structures may be continuous, for example in the form of a continuous loop, or may be discontinuous, for example in the form of a loop or elongate element having at least two anchor structures for securing in bone.
Abstract:
Spinous process constraint structures include a first attachment element for placement over a first spinous process and a second attachment element for placement over a second spinous process. The attachment elements are joined by a single connector which may optionally include a compliance member for providing controlled elasticity between the spinous processes.