Abstract:
Tumor tissue, including soft and/or bony tissue, are harvested from a subject and morcellated. The morcellated tissue is placed in a cartridge which is placed in a containment chamber of a tumor tissue processing device. Cancer cells in the morcellated tumor tissue are destroyed without destroying tumor antigens therein. These cells are destroyed cryogenically by exposing the cartridge to a cooling fluid such as liquid nitrogen, optionally with a warming cycle, and optionally with more than one freezing/thawing cycle. The treated tissue and/or cells are then extracted from the cartridge and reintroduced to the subject after they have reached a threshold condition. The treated tissue and/or cells can be reintroduced via a containment sleeve or a reimplantation bag.
Abstract:
Spinal implants for limiting flexion of the spine are implanted between a superior spinous process and an inferior spinous process or sacrum. The implants include upper straps which are placed over the upper spinous process, while the lower portions of the implant are attached to the adjacent vertebra or sacrum. The attachments may be fixed, for example using screws or other anchors, or may be non-fixed, for example by placing a loop strap through a hole in the spinous process or sacrum.
Abstract:
Spinal implants for limiting flexion of the spine are implanted between a superior spinous process and an inferior spinous process or sacrum. The implants include upper straps which are placed over the upper spinous process, while the lower portions of the implant are attached to the adjacent vertebra or sacrum. The attachments may be fixed, for example using screws or other anchors, or may be non-fixed, for example by placing a loop strap through a hole in the spinous process or sacrum.
Abstract:
A spinal implant for limiting flexion of the spine includes a tether structure for encircling adjacent spinal processes. Usually, a pair of compliance members will be provided as part of the tether structure for elastically limiting flexion while permitting an extension. A cross-member is provided between the compliance member or other portions of the tether structure to stabilize the tether structure and prevent misalignment after implantation.
Abstract:
A surgical fastening mechanism for releasably locking an implantable tether includes a housing having a central channel. The housing has an entry aperture, an exit aperture and a side channel extending therebetween. A roller element has a sidewall with an aperture therethrough and the roller is slidably disposed at least partially in the central channel such that the entry and exit apertures are at least partially aligned with the roller aperture. This permits passage of the tether therethrough. Rotation of the roller element in a first direction winds the tether around the roller thereby creating a friction interface between the roller element, the housing and the tether. A locking mechanism is operably connected with either the housing or the roller element and is adapted to prevent rotation of the roller in the central channel and also adapted to prevent release of the tether from the roller.
Abstract:
Spinous process constraint structures include a first attachment element for placement over a first spinous process and a second attachment element for placement over a second spinous process. The attachment elements are joined by a single connector which may optionally include a compliance member for providing controlled elasticity between the spinous processes.
Abstract:
A spinal implant system for restricting flexion of a spine includes an elongate band proportioned to engage at least two spinous processes. During use, the band is positioned engaging the spinous processes at a spinal segment of interest, where it restricts flexion at the segment. The length and tension of the band may be adjustable following to implantation using percutaneous or transcutaneous means.
Abstract:
Methods, devices and systems facilitate diagnosis, and in some cases treatment, of back pain originating in intervertebral discs. Methods generally involve introducing one or more substances into one or more discs using a catheter device. In one embodiment, a patient assumes a position that causes back pain, and a substance such as an anesthetic or analgesic is introduced into the disc to determine whether the substance relieves the pain. Injections into multiple discs may optionally be performed, to help pinpoint a disc as a source of the patient's pain. In some embodiments, the catheter device is left in place, and possibly coupled with another implantable device, to provide treatment of one or more discs. A catheter device includes at least one anchoring member for maintaining a distal portion of the catheter within a disc.
Abstract:
A spinal treatment system includes a constraint device having an upper tether portion, a lower tether portion and a compliance member coupled therebetween. The upper tether portion is coupled with a superior spinous process of a spinal segment in a patient and the lower tether portion is coupled with an inferior spinous process or sacrum of the spinal segment. The length or tension in the constraint device is adjustable so that the construct of the tether portions and the compliance member provides a force resistant to flexion of the spinal segment. The system also includes a first prosthesis coupled with the spinal segment, wherein the constraint device modulates loads borne by the prosthesis or by tissue adjacent thereto.
Abstract:
A spinal implant system for restricting flexion of a spine includes an elongate band proportioned to engage at least two spinous processes. During use, the band is positioned engaging the spinous processes at a spinal segment of interest, where it restricts flexion at the segment. The length and tension of the band may be adjustable following to implantation using percutaneous or transcutaneous means.