Abstract:
A wireless-linked remote ecological environment monitoring system is proposed, which is characterized by the use of a sensor network such as WSN (wireless sensor network) installed at the remote site for collecting ecological data, and the use of a public wireless communication system such as GSM (Global System for Mobile Communications) for transferring all the collected ecological data to a back-end host server unit where the ecological data are compiled into webpages for posting on a website. This feature allows the research/management personnel to browse the ecological data simply by linking a network workstation via a network system such as the Internet to the website, without having to travel to the remote site and collect ecological data by human labor.
Abstract:
A mobile terminal device includes a detector, a transceiver, an analyzer, an execution module, and a connection module. The detector generates a probing request signal. The transceiver receives signals sent from a plurality of access points (AP). The analyzer retrieves a plurality of Received signal strength Indications (RSSI) of the plurality of APs and workload of the plurality of APs by analyzing the signals. The execution module generates a plurality of indices of the plurality of APs based on an analysis results, and selects one of the plurality of indices as a best comprehensive index. The connection module establishes a connection between an AP corresponding to the best comprehensive index and the mobile terminal device.
Abstract:
A method of making micro-holes on a metal plate includes: (A) feeding a metal plate on a workbench forward to extend beyond a shearing edge; (B) locating a punching head at a first position, and keeping a working space between the punching head and the workbench; (C) exerting a shearing force towards the workbench by the punching head; (D) bending the metal plate by the shearing force, and forming a plurality of spot-shaped cavities arranged in a row on a second surface; (E) bearing a shearing force on the first surface of the metal plate to form a linear groove; (F) deforming the metal plate by the shearing force to cause the spot-shaped cavities arranged in a row to communicate with the linear groove to form micro-holes; (G) the punching head returning to the first position and moving a working distance to a second position; (H) feeding the metal plate again; (I) the punching head repeating the above steps at the second position; (J) the punching head returning to the second position and then moving back to the first position to complete a processing cycle. The method can produce a maximum of micro-holes on a certain area of the metal plate, which can be used as a sound gobo with an enhanced sound-absorption rate.
Abstract:
A assembly includes at least a first and a second light emitting source for emission of light, and an air passage between the first and second light emitting sources to allow air flow therethrough for dissipation of heats generated by the light emitting sources.
Abstract:
An antenna device including a substrate, a ground layer, a first feeding element, a second feeding element, a first control circuit and a second control circuit is provided. The substrate has a top surface and a lower surface. The ground layer disposed on the lower surface includes a first, a second and a third ground portions. The third ground portion is separated from the first and the second ground portions by a first and a second slots, respectively. The first and the second feeding elements include a first and a second conductive feeding lines, respectively. The first and the second conductive feeding lines cross over the first and the second slots and are electrically connected to the first and the second ground portions, respectively. The radiation pattern of the antenna device is variable by selectively operating the first, the second, the third and the fourth control circuits.
Abstract:
An exemplary apparatus (10), for removing buoyant pollutants having oil and debris atop a body of coolant, includes a pollutant collecting device (11), a pump (12) and a controlling module (13). The pollutant collecting device includes a hollow tub (12) and a collecting module (113). The collecting module is partially received in the hollow tub and is slidable relative to the hollow tub. The pump communicates with the hollow tub. The controlling module is configured for controlling the pump to draw coolant, oil or a mixture of coolant and buoyant pollutants into the hollow tub or out of the hollow tub.
Abstract:
A method for controlling a remote wireless device with a user device includes the user device sending a request message packet to the remote wireless device, where the remote wireless device verifies the request message packet and sends a reply message packet to the user device if the request message packet passes verification. The user device verifies the reply message packet and sends a control message packet to the remote wireless device if the reply message packet passes verification. The remote wireless device verifies the control message packet and sends an acknowledgment message packet to the user device if the control message packet passes verification.
Abstract:
A light emitting diode (LED) light engine is provided. According to one embodiment of the invention, the LED light engine includes a housing; an LED mounting board secured within the housing, the LED mounting board including one or more LED electrically connected to the LED mounting board, the LED mounting board configured to receive power from a power source to power the one or more LED; and a heat bridge conductively coupling the LED mounting board to the housing, wherein the heat bridge is configured to conduct heat from the LED mounting board to the housing, wherein the housing is configured to dissipate heat. The heat bridge may take one of several different configurations. A lighting assembly may be provided for securely mounting one or more LED light engines.
Abstract:
The present invention is directed to a phosphoric ester of 2,3-dihydroxypropyl cellulose or 3-(2,3-dihydroxypropoxy)-2-hydroxypropyl cellulose, the cellulose having optionally undergone partial carbamidation, and to a metal absorbent employing the ester, and to a metal-absorbing apparatus employing the metal adsorbent.The cellulose derivative phosphoric ester serves as a metal adsorbent which exhibits high metal adsorption performance and metal adsorption rate per unit weight; has high mechanical strength; effectively soften water or a similar liquid; removes heavy metals from wastewater or a similar liquid at remarkably high efficiency; has excellent processability and can be formed into a variety of shapes and thus is applicable within a wide range; and can readily be reutilized.
Abstract:
A light-emitting assembly comprising a lens, a first optical source, a second optical source and a third optical source, wherein the lens is disposed forward of said first, second and third optical sources; the third optical source is intermediate the first and second optical sources; and the lens and the first, second and third optical sources are arranged so that light emitted from the first and second optical sources merges at the third optical source after undergoing internal reflection at the lens.