Abstract:
Appliances are made using a dental mold representing a patient's dental configuration. In particular, thermoformable plastic positioning appliances which fit over the patient's teeth may be formed over a three-dimensional mold of the patient's dentition. An apparatus and methods which employ a manipulable or reconfigurable mold to model patient dentition and gingiva at each stage of treatment. The apparatus and methods are particularly useful for performing midcourse corrections during orthodontic procedures using a plurality of such appliances in sequence.
Abstract:
An improved dental appliance system, and methods for using and fabricating the improved appliance, including a polymeric overlay or shell having a teeth-receiving cavity formed therein and a wire mounted on or embedded in the polymeric shell. The dental appliance having the necessary stiffness or strength to firmly secure the appliance on the teeth and provide controlled forces required for repositioning the teeth, until such time as removal of the appliance is desired. The appliance may be configured for use with a removal mechanisim. The removal mechanism undergoes a state change stimulated by an environmental stimulus or environmental switch.
Abstract:
A computer obtains a digital model of a patient's dentition, including a dental model representing the patient's teeth at a set of initial positions and a gingival model representing gum tissue surrounding the teeth. The computer then derives from the digital model an expected deformation of the gum tissue as the teeth move from the initial positions to another set of positions.
Abstract:
Traditional orthodontic treatment often involves the use of basic repositioning devices, such as braces, and the use of supplementary devices, components or accessories to achieve desired end results. Such components may be mounted on fixed, non-removable devices or they may be part of a removable appliance typically worn prior to the application of the fixed devices. As with traditional treatment, it may be desired to utilize similar components when repositioning teeth with removable elastic repositioning appliances. Due to the nature of elastic appliances, such components may take a variety of forms ranging from readily available traditional accessories to specially created devices. Thus, traditional components may be mounted on or embedded in an elastic appliance, or the appliance may be formed to provide similar components. Likewise, the appliance may be modified to provide additional features for specific orthodontic treatments.
Abstract:
The present invention provides improved devices, systems and methods for repositioning teeth from an initial tooth arrangement to a final tooth arrangement. Repositioning is accomplished with a system comprising a series of polymeric shell appliances configured to receive the teeth and incrementally reposition individual teeth in a series of successive steps. The individual appliances may be formed from layers having different stiffnesses (elastic moduluses), and the stiffnesses of successive appliances may be different, or both.
Abstract:
The present invention provides improved systems and methods for removably attaching a dental positioning appliance to the dental features of a patient during orthodontic treatment. Such removable dental positioning appliances are often preferred over conventional braces for tooth repositioning due to comfort, appearance and ease of use. These appliances function by applying force to specific surfaces of the teeth or dental features to cause directed movement. However, the type of movement and level of force applied is usually dependent on the surface characteristics and positions of the dental features. In many cases, these aspects are inadequate to provide sufficient anchoring or to impart considerable force on the teeth to be repositioned. Such limitations may be diminished with the use of one or more attachment devices which may be positioned on the teeth or dental features to provide the appropriate physical features. Specific design and location of these attachment devices may provide newly achievable and/or more effective repositioning forces, anchoring ability and appliance retention. The systems and methods of the present invention provide the design, production and use of such attachment devices with removable dental positioning appliances in orthodontic treatment.
Abstract:
The present invention provides methods and systems of repositioning teeth for use in orthodontic treatment, with particular applicability to removable elastic repositioning appliances. Such appliances may be challenged by traditional tooth movements which intrude the crown of the tooth or present tooth positions which reduce available points of purchase. These challenges may be overcome with a series of tooth movements in which a tooth is translated in a “root-first” position. The movements may take advantage of the inherent characteristics of elastic repositioning appliances in translating a tooth from a first position to a desired position along a gingival plane.
Abstract:
A system for repositioning teeth comprises a plurality of individual appliances. The appliances are configured to be placed successively on the patient's teeth and to incrementally reposition the teeth from an initial tooth arrangement, through a plurality of intermediate tooth arrangements, and to a final tooth arrangement. The system of appliances is usually configured at the outset of treatment so that the patient may progress through treatment without the need to have the treating professional perform each successive step in the procedure.
Abstract:
A positive mold for use in creating an orthodontic appliance is produced by obtaining a digital dentition model, such as a 3D geometric surface model or a 3D volumetric image model, that defines the shape of an orthodontic appliance and then altering the digital dentition model to remove a portion that does not affect the shape of the orthodontic appliance. The altered digital dentition model then is used to construct a positive mold for the orthodontic appliance. Processing circuitry, such as a programmed computer, is used to obtain and alter the digital dentition model. A rapid prototyping device, such as a stereolithography machine, is commonly used to construct the positive mold.
Abstract:
Methods and apparatus fit a set of upper and lower teeth in a masticatory system by generating a computer representation of the masticatory system and computing an occlusion based on interactions in the computer representation of the masticatory system.