Abstract:
The invention provides methods for treating cancers, such as melanoma and/or metastatic melanoma, using compounds that interact with and/or inhibit cellular proteins lamin A/C, ATP-dependent RNA helicase DDX1 (DDX1), heterogeneous nuclear ribonuclear protein H1/H2 (hnRNP H2), and/or heterogeneous nuclear ribonuclear protein A2/B1 (hnRNP A2/B1). The invention additionally provides a method for identifying compounds active against melanoma cells.
Abstract:
An electronic processing system agent accesses population health literacy data from a population of at least 100 individuals pertaining to assessed health literacy of members of the population, and demographic data from the population corresponding to age, race, and level of education. The agent collects skills data from the patient corresponding to a set of questions presented to the patient relating to skills needed for understanding therapeutic instructions, as well as personal data relating to the age, race, and level of education of the patient. The agent carries out a polytomous logistic regression using the collected population health literacy data, demographic data, skills data, and personal data in order to assign a health literacy level to the patient corresponding to one of a plurality of groups, and communicates a strategy for the patient corresponding to the assigned health literacy level of the patient, in real time, to enable the patient to have a communication of therapeutic instructions when the patient has responded to the set of questions.
Abstract:
The invention provides compositions including epinephrine nanoparticles and methods for therapeutic use of the compositions in the treatment of conditions responsive to epinephrine such as a cardiac event or an allergic reaction, particularly anaphylaxis. The epinephrine nanoparticles can be incorporated into orally-disintegrating and fast-disintegrating tablet pharmaceutical formulations and can significantly increase the sublingual bioavailability of epinephrine, and thereby reduce the epinephrine dose required. Additionally, the invention provides methods for fabrication of stabilized epinephrine nanoparticles for use in the described compositions.
Abstract:
The invention provides compositions including epinephrine nanoparticles and methods for therapeutic use of the compositions for the treatment of conditions responsive to epinephrine such as a cardiac event or an allergic reaction, particularly anaphylaxis. The epinephrine nanoparticles can be incorporated into orally-disintegrating and fast-disintegrating tablet pharmaceutical formulations and can significantly increase the sublingual bioavailability of epinephrine, and thereby reduce the epinephrine dose required. Additionally, the invention provides methods for fabrication of stabilized epinephrine nanoparticles for use in the described compositions.
Abstract:
The invention provides cobalamin (vitamin B12) nutraceutical compositions and methods for use thereof for improving cognitive function in subjects having disorders of cognitive function such as neurodegenerative disorders, neurodevelopmental disorders, and neuropsychiatric disorders. This improvement in cognitive function is achieved through the ability of the cobalamin (vitamin B12) nutraceutical compositions to increase methylation capacity and vitamin B12 activity in the brains of the subjects.
Abstract:
The invention provides compositions including epinephrine fine particles, including epinephrine nanoparticles or nanocrystals and epinephrine microparticles or microcrystals, and methods for therapeutic use of the compositions for the treatment of conditions responsive to epinephrine such as a cardiac event or an allergic reaction, particularly anaphylaxis. The epinephrine fine particles can be incorporated into orally-disintegrating and fast-disintegrating tablet pharmaceutical formulations and can significantly increase the sublingual bioavailability of epinephrine, and thereby reduce the epinephrine dose required.
Abstract:
Digital files are compressed using a process including Schmidt decompositions of matrices using an algorithm, termed ‘BSD’ herein, which is based on an algebraic method generalizing QR decomposition. Software analyzes an input file and initially identifies a matrix M, with entries within a predefined set of integers, within the file. Next, essential entries are defined, extracted from M, that contain sufficient information to recover Musing BSD. The compressed file includes the essential entries and their positions within M. To achieve an encryption process, software encrypts the pattern matrix that includes the positions of the essential entries of M. To achieve a lossy compression, software identifies essential entries that contain sufficient information to recover an approximation to M for which the quality is determined by an error threshold. For a more efficient lossy compression, software uses singular value decomposition, BSD, and other signal processing of M.
Abstract:
The invention provides atropine sulfate (AS) rapidly-disintegrating sublingual tablets (RDSTs) in a sublingual dosage form and methods for therapeutic use of the AS RDSTs for treatment of organophosphate (OP) exposure and acute toxicity. The AS RDSTs provide an alternative easy-to-use dosage form for the management of organophosphate toxicity. Additionally, the invention provides methods for formulation and quality evaluation of the atropine sulfate rapidly-disintegrating sublingual tablets.
Abstract:
The invention provides compositions including epinephrine fine particles, including epinephrine nanoparticles or nanocrystals and epinephrine microparticles or microcrystals, and methods for therapeutic use of the compositions for the treatment of conditions responsive to epinephrine such as a cardiac event or an allergic reaction, particularly anaphylaxis. The epinephrine fine particles can be incorporated into orally-disintegrating and fast-disintegrating tablet pharmaceutical formulations and can significantly increase the sublingual bioavailability of epinephrine, and thereby reduce the epinephrine dose required.
Abstract:
The invention provides compositions including epinephrine nanoparticles and methods for therapeutic use of the compositions for the treatment of conditions responsive to epinephrine such as a cardiac event or an allergic reaction, particularly anaphylaxis. The epinephrine nanoparticles can be incorporated into orally-disintegrating and fast-disintegrating tablet pharmaceutical formulations and can significantly increase the sublingual bioavailability of epinephrine, and thereby reduce the epinephrine dose required. Additionally, the invention provides methods for fabrication of stabilized epinephrine nanoparticles for use in the described compositions.