Abstract:
A user equipment (UE) location in a wireless network can be determined by leveraging geometric calculations for an overlaid bin grid framework mapping the wireless network area to store differential values for each frame of the bin grid framework for each pair of relevant NodeBs. A timing offset can be determined, such that when a time value from a target UE is accessed, the location can be quickly determined with minimal real time computation. In an aspect, the time value from an idle-state target UE can be accessed. The target UE time value can be searched among pre-computed differential value data sets indexed by relevant NodeB site pairs to return sets of frames that can facilitate converging on a location for the target UE. Intersecting frames can represent the geographic location of the UE in the wireless network. Further, the data can be leveraged to correct timing in the network.
Abstract:
Systems and techniques for determining the location of user equipment (UE) in a wireless network are disclosed. These techniques leverage geometric calculations for an overlaid bin grid framework mapping the wireless network area to store differential values for each frame of the bin grid framework for each pair of relevant NodeBs. A timing offset can be determined, such that when a time value from a target UE is accessed, the location can be quickly determined with minimal real time computation. In an aspect, the time value from an idle-state target UE can be accessed. The target UE time value can be searched among pre-computed differential value data sets indexed by relevant NodeB site pairs to return sets of frames that can facilitate converging on a location for the target UE. Intersecting frames can represent the geographic location of the UE in the wireless network. Further, the data can be leveraged to correct timing in the network.
Abstract:
The disclosed subject matter provides for sharing timed fingerprint location information. In an aspect, timed fingerprint location information can be associated with a location of a user equipment. This timed fingerprint location information can be shared with other devices. As such, with proper analysis, these other devices can employ the shared timed fingerprint location information to determine their location. In an aspect, the other devices can determine that they are located at the same location as the user equipment. However, a level of error can be inherent in the location determined from shared timed fingerprint location information. In some embodiments, this error can be compensated for.
Abstract:
A communications device is provided. This includes a processor adapted to receive one or more identified data sources from at least one network database. An applications component is configured to determine one or more network applications that communicate with the processor based in part on the one or more identified data sources. A filter can be configured to at least partially disable data exchanges to the one or more identified data sources during communications with at least one of the one or more network applications.
Abstract:
Providing for network repair prioritization as a function of impact on network services is described herein. By way of example, impact of a given service outage on surrounding network infrastructure and associated terminals can be analyzed and estimated. The impact can be characterized at least in part by changes in loading to surrounding network equipment, as well as related quality and performance metrics. Network impact estimates and loading changes can be derived through mobile device position data for an impacted area and identifying overlapping coverage areas, and signal characteristics of the surrounding network infrastructure. Measured or predicted changes in network performance can be scored to provide relative priorities for allocating limited service personnel in repairing base station errors. Personnel resources can therefore be deployed in a manner that more accurately reflects customer service goals of a network provider.
Abstract:
The disclosed subject matter provides for fraud analysis for a location aware transaction. In an aspect, location information can be associated with historical fraud events. The location of user equipment can be analyzed against historical fraud information to facilitate determination of a fraud factor value. The fraud factor value can reflect a determination related to the likelihood of fraud occurring in the present transaction based on the historic fraud events at the same or similar location as the present location of the user equipment. The determination can be based on fraud rules. Further aspects provide for abstraction of the fraud factor to limit exposure of personal information associated with wireless carrier subscribers in fraud analysis for a location aware transaction.
Abstract:
The disclosed subject matter provides for selecting a radio access bearer resource based on historical data related to the radio access bearer resource. Location information can be employed to determine a radio access bearer resource. Historical information related to the radio access bearer resource can then be employed to determine the suitability of the radio access bearer resource. A set of radio access bearer resources can be ordered or ranked to allow selection of a suitable radio access bearer resource from the set. Incorporation of historical information can provide for additional metrics in the selection of a radio access bearer resource over simple contemporaneous radio access bearer resource information. In some embodiments timed fingerprint location (TFL) information can be employed to determine a location.
Abstract:
Systems and techniques for determining the accuracy of network based user equipment (UE) locating methods and results thereof are disclosed. Periodic direct measurements of location error for a network based location result are determined by the difference in the network based location result and an assisted global positioning system (AGPS) location result. The location error is associated with a cell-pair contributing to data employed to determine the network based location result. The error associated with the cell-pair is then applied as a measure of accuracy in future network based location results that also employ data associated with the cell-pair to determine the future network based location result.
Abstract:
Systems, methods, and computer-readable media are described herein for allowing a user or a service provider to selectively prioritize voice communications over data communications. By selectively prioritizing voice communications over data communications, the number of dropped calls in the mobile telecommunications network can be significantly reduced.
Abstract:
A communications device is provided. This includes a processor adapted to receive one or more identified data sources from at least one network database. An applications component is configured to determine one or more network applications that communicate with the processor based in part on the one or more identified data sources. A filter can be configured to at least partially disable data exchanges to the one or more identified data sources during communications with at least one of the one or more network applications.