Abstract:
Downlink signal strength measurements from base stations (BSs) are reported by mobile devices to facilitate mobile device locating. A system receives the signal strength information and determines whether the mobile device is within a selected distance from any of the BSs in response to detecting that signal strength information for one of the BSs is greater than a predefined value. The system determines an area over which to search for the mobile device if the system fails to detect that the signal strength information for any of the BSs is greater than the predefined value. The area over which the search is performed is an intersection of all regions determined by the signal strengths of the BSs.
Abstract:
Site location determination using crowd sourced propagation delay and location data is provided. A propagation delay component receives a set of propagation delay measurements for communications between a mobile device and an access point. A user equipment location component receives a location of the mobile device, and a combination component combines the set of propagation delay measurements and the location into a set of location data. An access point location component determines a set of intersecting locations between the set of location data and additional sets of location data, and determines a location of the access point based on the set of intersecting locations.
Abstract:
Systems and techniques for determining the location of user equipment (UE) in a wireless network are disclosed. These techniques leverage geometric calculations for an overlaid local bin grid framework mapping an area of a wireless network to stored differential values for each frame of the local bin grid framework for pairs of relevant NodeB radios. A timing offset can be determined, such that when a time value from the UE is accessed, the location can be quickly determined with minimal real time computation. In an aspect, the UE time value can be searched for in the pre-computed differential value data set indexed by a relevant NodeB radio pair to return a set of frames that can be intersected with a second set of frames for a second NodeB radio pair for the UE. The intersecting frames can represent the location of the UE in the wireless network.
Abstract:
Systems and methods that facilitate computation of delay error offset information are provided. In one embodiment, a method can include: receiving, by a system including a processor, measurement information indicative of a location of a mobile device; calibrating, by the system, the measurement information resulting in calibrated measurement information; comparing, by the system, the calibrated measurement information and historical calibrated measurement information; and computing, by the system, a measurement error based, at least, on the comparing, wherein the measurement error includes delay error offset information.
Abstract:
A user equipment (UE) location in a wireless network can be determined by leveraging geometric calculations for an overlaid bin grid framework mapping the wireless network area to store differential values for each frame of the bin grid framework for each pair of relevant NodeBs. A timing offset can be determined, such that when a time value from a target UE is accessed, the location can be quickly determined with minimal real time computation. In an aspect, the time value from an idle-state target UE can be accessed. The target UE time value can be searched among pre-computed differential value data sets indexed by relevant NodeB site pairs to return sets of frames that can facilitate converging on a location for the target UE. Intersecting frames can represent the geographic location of the UE in the wireless network. Further, the data can be leveraged to correct timing in the network.
Abstract:
Adaptive radio area network (RAN) coverage is described. The azimuth, elevation or carrier-channel power of an antenna of a RAN can be adjusted to adapt the coverage area of the RAN. Monitoring scheduled and unscheduled changes in the characteristics of the coverage area can facilitate determining an adaptation response to adapt the coverage area. This can be performed in a closed-loop and can facilitate optimization of the coverage area with regard to predetermined optimization characteristics. UEs can be employed as mobile reporting components to measure coverage characteristics as a function of the position of the UE in the RAN. The UE can report measurements and the location information of the UE. The location information can be timed fingerprint location information.
Abstract:
Systems and methods disclosed herein can implement a femtocell calibration solution that uses the known location of the femtocell to calibrate timing based locating systems. The calculated time differences of different signals sent between macrocells and a mobile device can be used to solve for a reference time difference that accounts for the timing differences of the unsynchronized macrocells. The reference time difference can then be used to solve for the location of another mobile device if the calculated time differences between that mobile device and the macrocells are known. The solution can include taking many measurements of the calculated time difference at the first mobile device in order to average them to get a more accurate reference time difference. The solution can further include ceasing measurements at the first mobile device when the mobile device is no longer within range of the femtocell.
Abstract:
Systems and techniques for determining the location of user equipment (UE) in a wireless network are disclosed. These techniques leverage geometric calculations for an overlaid bin grid framework mapping the wireless network area to store differential values for each frame of the bin grid framework for each pair of relevant NodeBs. A timing offset can be determined, such that when a time value from a target UE is accessed, the location can be quickly determined with minimal real time computation. In an aspect, the target UE time value can be search for in the pre-computed differential value data set indexed by a relevant NodeB site pair to return a set of frames (forming a hyperbola between the site pair) that can be intersected with a second set of frames for a second NodeB site pair for the same UE. The intersecting frames can represent the location of the UE in the wireless network. Further, the data can be leveraged to correct timing in the network.
Abstract:
Systems and techniques for determining the location of user equipment (UE) in a wireless network are disclosed. These techniques leverage geometric calculations for an overlaid bin grid framework mapping the wireless network area to store differential values for each frame of the bin grid framework for each pair of relevant NodeBs. A timing offset can be determined, such that when a time value from a target UE is accessed, the location can be quickly determined with minimal real time computation. In an aspect, the target UE time value can be search for in the pre-computed differential value data set indexed by a relevant NodeB site pair to return a set of frames (forming a hyperbola between the site pair) that can be intersected with a second set of frames for a second NodeB site pair for the same UE. The intersecting frames can represent the location of the UE in the wireless network. Further, the data can be leveraged to correct timing in the network.
Abstract:
Systems and techniques for determining the accuracy of network based user equipment (UE) locating methods and results thereof are disclosed. Periodic direct measurements of location error for a network based location result are determined by the difference in the network based location result and an assisted global positioning system (AGPS) location result. The location error is associated with a cell-pair contributing to data employed to determine the network based location result. The error associated with the cell-pair is then applied as a measure of accuracy in future network based location results that also employ data associated with the cell-pair to determine the future network based location result.