Abstract:
A method and system to provide a command queue re-ordering method that can make the power save and reduction in acoustic noise. The command queue re-ordering method involves calculating the value of an evaluation function, Ev=A×T+(1−A)×Fun(L) (A is any number from 0 to 1, T is a latency required to execute a write command and/or read command, and Fun(L) is an evaluation function with a seek distance L) for the write command and/or read command, and selecting the write command and/or read command having the minimum value as a next command to be execute.
Abstract:
An active control mechanism and method for stabilizing a servo-controlled actuator system such as an actuator system in a data recording disk drive by compensating the vibrational modes of the actuator's arm assembly. The control mechanism has a sensing arrangement which can include one or more individual sensors attached to the actuator at locations where they generate signals in phase with the vibrational modes, and especially with all the low-frequency major vibrational modes, of the arm assembly. A control mechanism derives from the signals an adjustment signal consisting of three corrective terms—a stiffening correction, an active damping correction, and an inertia correction by a phase correction. Furthermore, high-frequency out-of-phase modes can be stabilized by appropriately shifting the phase of the signals. The adjustment signal is used in the feedback control loop to stabilize the actuator system.
Abstract:
The present invention teaches the realization of a stable feedback control by selecting an optimal notch filter in an apparatus, such as a hard disk drive, that employs a positioning apparatus, such as an actuator, for positioning an object. The present invention further teaches the derivation of a frequency characteristic of a control loop excluding a notch filter by employing a method that does not damage a positioning apparatus. The present invention further teaches the method of adjusting a notch filter in accordance with a change of the resonant frequency of an actuator caused by the temperature fluctuations to prevent any deterioration of a feedback control performance.
Abstract:
A data storage device with improved data storage densities, coupled with lower hard error and write-inhibit events is described. A feed-forward write inhibit (FFWI) method enables data tracks to be written more densely. Alternatively, the FFWI method may reduce the hard error and write inhibit events to improve data storage performance. A concept of virtual tracks enables the FFWI method to be applied to the writing of circular data tracks with non-circular servo tracks, or to the writing of non-circular data tracks with PES data from circular servo tracks—in both cases, improvements to performance and/or storage densities are enabled. The FFWI method may also be applied to the case of both non-circular servo and data tracks.
Abstract:
A HDD comprising a temperature sensor disposed inside the HDD configured to periodically measure temperature inside of said hard disk drive; a magnetic disk; a read head; a write head; memory for storing RWO data. The RWO data is a function of a distance between the read head and the write head. The HDD also includes a RWO data adjustor configured to adjust the RWO data in response to a change in temperature of the HDD to compensate for a change in the distance between the read head and the write head based on the change in temperature.
Abstract:
A magnetic data storage system having a magnetic disk having burst patterns for providing a position error signal (PES) wherein each magnetic burst pattern is offset from an adjacent burst pattern by ¼ track pitch. All of the magnetic bits of the burst patterns can be unipolar magnetized, and the bits of each burst pattern can be aligned with one another in radial and circumferential direction. The magnetic media can be a bit patterned media wherein the magnetic bits of the burst patterns are magnetically isolated portions separated by non-magnetic spaces or non-magnetic material.
Abstract:
A hard disk drive control module has a feed-forward signal input port communicatively coupled with a reference model. The hard disk drive control module has a tracking error signal input port communicatively coupled with a magnetic transducer of the hard disk drive. The hard disk drive control module has an error calculator module configured for determining a difference between an estimated tracking error signal in response to a first feed-forward signal and an actual tracking error signal of the magnetic transducer in response to the first feed-forward signal. The hard disk drive control module has a feed-forward signal adjuster module configured for adjusting a gain and a phase for a second feed-forward signal based on the difference between the estimated tracking error signal in response to the first feed-forward signal and the actual tracking error signal of the magnetic transducer. The hard disk drive control module has a feed-forward signal adjustment output port communicatively coupled to the second feed-forward signal.
Abstract:
A data recording disk drive has one or more capacitive sensors for sensing out-of-plane vibration of the disk or disks. The sensors are attached to a support structure that is attached to the disk drive housing. Each sensor is associated with a disk and faces a surface of the disk near the outer perimeter of the disk and close to the recording head. The support structure can be made of a metal or a high-strength plastic and can be a separate structure mounted to the housing, or integrated as part of the single-piece housing casting. If it is metallic, as would be the case if it were integrated with the housing, then layers of insulating material separate the sensors from the support structure. A support structure that serves other functions in the disk drive, such as a support for air dams that extend between the disks, can also function as the support structure for the capacitive sensors.
Abstract:
A method of reducing the effect of vibrations associated with seek operations is disclosed. A feedforward filter is adjusted. A cancellation signal is then generated utilizing an adjusted feedforward filter, wherein the cancellation signal models a resonance of a vibration mode. The cancellation signal is provided at an actuator control signal, thereby inducing a force applied to an actuator such that the force holds the actuator at a track center position while vibrations occur during hard disk drive operations.
Abstract:
A method of minimizing a mechanical mode excitation is disclosed. A seed position trajectory is generated utilizing a third order time polynomial, wherein the third order time polynomial is segmented for constant velocity, and deceleration. A reference position is generated by applying a first infinite impulse response filter to the seed position trajectory. A reference acceleration is then generated by applying a second infinite impulse response filter to the reference position. Then, the reference position and the reference acceleration are fed forward to a servo loop such that an actuator follows a desired seek trajectory, thereby reducing a position error signal at the seek settling.