Abstract:
Methods and systems are provided for hardware-accelerated packet multicasting in a virtual routing system. According to one embodiment, a virtual routing engine (VRE) including virtual routing processors and corresponding memory systems are provided. The VRE implements virtual routers (VRs) operable on the virtual routing processors and associated routing contexts utilizing potentially overlapping multicast address spaces resident in the memory systems. Multicasting of multicast flows originated by subscribers of a service provider is simultaneously performed on behalf of the subscribers. A VR is selected to handle multicast packets associated with a multicast flow. A routing context of the VRE is switched to one associated with the VR. A packet of the multicast flow is forwarded to multiple destinations by reading a portion of the packet from a common buffer for each instance of multicasting and applying transform control instructions to the packet for each instance of multicasting.
Abstract:
Methods and systems are provided for steering network packets. According to one embodiment a method is provided for steering incoming network packets. Each network packet processing resource of a network routing/switching device is dynamically assigned to one or more network interfaces of the network routing/switching device. Each of the network packet processing resources includes one or more processing elements and a memory. Incoming network packets received by the network interfaces are steered to an appropriate network packet processing resource based on the dynamic assignment.
Abstract:
Methods and systems are provided for hardware-accelerated packet multicasting in a virtual routing system. According to one embodiment, a virtual routing engine (VRE) including virtual routing processors and corresponding memory systems are provided. The VRE implements virtual routers (VRs) operable on the virtual routing processors and associated routing contexts utilizing potentially overlapping multicast address spaces resident in the memory systems. Multicasting of multicast flows originated by subscribers of a service provider is simultaneously performed on behalf of the subscribers. A VR is selected to handle multicast packets associated with a multicast flow. A routing context of the VRE is switched to one associated with the VR. A packet of the multicast flow is forwarded to multiple destinations by reading a portion of the packet from a common buffer for each instance of multicasting and applying transform control instructions to the packet for each instance of multicasting.
Abstract:
Methods, systems and data structure for facilitating identification of nodes in a ring network are provided. According to one embodiment, a data structure is stored on a computer-readable storage media of a node (e.g., a blade) participating in a ring network, within a multi-blade system, for example. The data structure includes a packet-ring master field, a control-node master field, a node characteristics field, a connection state field, a node identification field and a marker field. The packet-ring master field indicates whether the node is a current packet-ring master. The control-node master field indicates whether the node is a control-node master. The node characteristics field specifies per-node characteristics. The connection state field indicates a current connection state of the node. The node identification field specifies the node. The marker field indicates whether the data structure is a node discovery marker.
Abstract:
Methods and systems for providing IP services in an integrated fashion are provided. According to one embodiment, a system includes a switch fabric and a line interface/network module, multiple virtual routing engines (VREs) and a virtual services engine (VSE) coupled with the switch fabric. The line interface/network module receives packets, steers ingress packets to a selected VRE and transmits egress packets according to their relative priority. VREs determines if a packet associated with a packet flow requires processing by the VSE by performing flow-based packet classification on the packet and evaluating forwarding state information associated with previously stored flow learning results. The VSE includes a central processing unit configured to perform firewall processing, Uniform Resource Locator (URL) filtering and anti-virus processing. If the packet is determined to require processing by the VSE, then the packet is steered to the VSE for firewall, URL filtering and/or anti-virus processing.
Abstract:
A system and method for providing IP services. A packet is received at a line interface/network module and forwarded to a virtual routing engine The virtual routing engine determines if the packet requires processing by a virtual services engine. If the packet requires processing by the virtual services engine, the packet is routed to the virtual services engine for processing.
Abstract:
Methods and systems are provided for applying metering and rate-limiting in a virtual router environment and supporting a hierarchy of metering/rate-limiting contexts per packet flow. According to one embodiment, multiple first level metering options and multiple second level metering options associated with a hierarchy of metering levels are provided. A virtual routing engine receives packets associated with a first packet flow and packets associated with a second packet flow. The virtual routing engine performs a first type of metering of the first level metering options on the packets associated with the first packet flow using a first metering control block (MCB) and performs a second type of metering of the second level metering options on the packets associated with the first packet flow and the packets associated with the second packet flow using a second MCB.
Abstract:
A system and method for providing IP services. A packet is received at a line interface/network module and forwarded to a virtual routing engine The virtual routing engine determines if the packet requires processing by a virtual services engine. If the packet requires processing by the virtual services engine, the packet is routed to the virtual services engine for processing.
Abstract:
A master node in a packet ring network periodically sends a packet containing a discovery marker into the packet ring network. As each node in turn receives the packet, each adds its own discovery marker, which contains its topology information, to the packet, saves the topology information of others, and resends the packet to the next node in the ring. Eventually, the master node receives the packet containing a chain of discovery markers for all active nodes terminated by the master's own discovery marker, so the master node then removes its own discovery marker and resends the packet in to the ring network. Each node in turn then removes its own discovery marker. In this way, all nodes in the ring see topology information for every other active node.
Abstract:
A master node in a packet ring network periodically sends packet containing a discovery marker into the packet ring network. As each node in turn receives the packet, each adds its own discovery marker, which contains its topology information, to the packer, saves the topology information of others, and resends the packet to the next node in the ring. Eventually, the master node receives the packer containing a chain of discovery markers for all active nodes terminated by the master's own discovery marker, so the master node then removes its own discovery marker and resends the packer in to the ring network. Each node in turn then removes its own discovery marker. In this way, all nodes in the ring see topology information for every other active node.