Abstract:
A method of generating a complex laser scanning pattern from a bioptical laser scanning system for providing 360° of omnidirectional bar code symbol scanning coverage at a point of sale station that employs a plurality of laser scanning stations about a two independently controlled rotating polygonal mirrors. The system has an ultra-compact construction, ideally suited for space-constrained retail scanning environments, and generates a 3-D omnidirectional laser scanning pattern between the bottom and side-scanning windows during system operation. The laser scanning pattern of the present invention comprises a complex of laser scanning planes, including a plurality of substantially-vertical laser scanning planes for reading bar code symbols having bar code elements (i.e. ladder type bar code symbols) that are oriented substantially horizontal with respect to the bottom-scanning window, and a plurality of substantially-horizontal laser scanning planes for reading bar code symbols having bar code elements (i.e. picket-fence type bar code symbols) that are oriented substantially vertical with respect to the bottom-scanning window.
Abstract:
Embodiments of an indicia reading terminal have multiple fields of view (“FOV”). This feature allows decoding of decodable indicia that exhibit different characteristics. These characteristics may affect the ability of the terminal to identify and decode the information stored therein. In one embodiment, the terminal comprises an optical imaging assembly with at least two FOVs. One of the FOVs is adequate to acquire information from decodable indicia with higher density than other decodable indicia.
Abstract:
A POS-based bar code symbol reading system that reads bar code symbols on objects being passed through the 3D imaging or scanning volume supported by the system, and employs one or more object motion sensors (e.g. imaging based, IR Pulse-Doppler LIDAR-based, ultra-sonic energy based, etc.) to (i) measure or estimate the speed of objects being manually passed through the 3D imaging or scanning volume by the system operator, and (ii) visually and/or audibly display object scanning speed measures or estimates to provide the system operator with feedback for optimizing system throughput. The POS-based bar code symbol reading system has a performance advantage that leads to quicker customer checkout times and productivity gain that cannot be matched by the conventional bar code symbol scanning technology.
Abstract:
A laser scanning system for generating a laser scanning pattern in a scanning field, while amplifying the scan-angle multiplication factor of rotating mirrors employed therein. The laser scanning system employs rotatable laser scanning assembly having an axis of rotation and first and second rotating mirrors with normal vectors that are coplanar with each other and said rotational axis, and which form an acute angle substantially less than 90 degrees so as to provide a laser scanning assembly with a scan angle multiplication factor that is greater than 2.0. A cluster of stationary mirrors mounted about the first and second rotating mirrors, for sweeping a laser beam off the cluster of stationary mirrors after a laser beam has been reflected off the first rotating mirror, then reflected off the second rotating mirror, and then directed outwardly towards an array of pattern mirrors, so as to generate a resultant laser scanning pattern within the scanning field.
Abstract:
A POS-based checkout/scale system having (i) a bar code symbol reading subsystem for reading bar code symbols on products being purchased at a retail POS station, and (ii) a produce weigh scale having a weigh scale assembly for weighing one or more produce items on a weigh platter during produce weighing operations carried out at the time of checkout at said retail POS station. The system also includes an automatic produce weighing interference detection subsystem, supporting an IR-based light curtain about the weigh platter, automatically detects when any object is overhanging the weigh platter during produce weighing operations, and generates an alert signal when such conditions are automatically detected.
Abstract:
A digital-imaging based code symbol reading system includes a planar laser illumination and imaging module (PLIIM) employing a 2-D image detection array to capture narrow-area 2D digital images, and then automatically processes the pixels of the narrow-area 2D digital images so as to generate composite single-column 1D digital images for decode processing. The system employs a method of capturing and processing narrow-area 2D digital images using semi-redundant sampling based pixel processing techniques, to composite single-column linear images on a 2D image detection array.
Abstract:
Misreads in decodable indicia by terminals such as bar code scanners (e.g., laser, image sensors) can occur. Solutions can include increasing redundancy or screening out erroneous data. Embodiments of screening error reduction circuits, terminals, and/or methods for processing decodable indicia data are provided.
Abstract:
A laser illumination beam generation system including a laser diode (LD) for producing a laser beam in response to a diode current supplied thereto, wherein the laser beam has a central characteristic wavelength. Diode current drive circuitry generates the diode current and supplies the same to the VLD. A high frequency modulation (HFM) circuitry modulates the diode current supplied to the laser diode, so as to produce a spectral side-band components about the central characteristic wavelength, and thereby reduces the coherence of the laser illumination beam as well as its coherence length. An optical multiplexing (OMUX) device receives the laser beam as an input beam and generates multiple laser beams therefrom and recombines the multiple laser beams so as to produce a composite output laser illumination beam having reduce coherence.
Abstract:
A method of driving a plurality of visible and invisible laser diodes so as to produce an illumination beam having a dynamically managed ratio of visible to invisible (IR) spectral energy/power during object illumination and imaging operations. The method involves supplying a plurality of visible laser and invisible laser diodes with a predetermined/default values of diode drive currents so as to illuminate the object with a spectral mixture of illumination during object illumination and imaging operations. One or more digital images of the illuminated object are captured and the image contrast quality thereof is measured, in real-time, so as to generate feedback or control data. This feedback or control data is used to dynamically generate the necessary values for the adjusted diode drive currents that are used to drive the visible and invisible laser diodes and produce an illumination beam having a dynamically managed ratio of visible to invisible (IR) spectral energy/power required to produce images of sufficient image contrast to ensure satisfactory image processing, while minimizing visual brightness to humans, at a POS station during object illumination and imaging operations.
Abstract:
The laser scanning system includes a laser scanning plane generation mechanism disposed within a housing mounted in or on a countertop at the POS station. The mechanism generates first and second pluralities of laser scanning planes which (i) intersect within predetermined scan regions contained within a 3-D scanning volume defined outside of the housing, and (ii) generate a plurality of groups of intersecting laser scanning planes within the 3-D scanning volume. The plurality of groups of intersecting laser scanning planes form a complex omni\-directional 3-D laser scanning pattern within the 3-D scanning volume capable of scanning a bar code symbol located on the surface of any object including a six-sided rectangular box-shaped object, presented within the 3-D scanning volume at any orientation and from any direction at the POS station so as to provide six-sided 360-degree omni-directional bar code symbol scanning coverage at the POS station.