摘要:
Various techniques directed to providing temporary peak power from a switching regulator are disclosed. In one aspect, a switching regulator includes a switch that is to be coupled between a power supply input and an energy transfer element of the power supply. A controller is coupled to be responsive to a feedback signal to be received from an output of the power supply. The controller is coupled to switch the switch in response to the feedback signal to regulate the output of the power supply. An oscillator is coupled to provide an oscillating signal to the controller to determine a maximum switching frequency of the switch. The oscillating signal is coupled to oscillate at a first frequency under a first moderate load condition at the power supply output. The oscillating signal is coupled to oscillate at a second frequency under a second peak load condition at the power supply output.
摘要:
A reduced cost energy transfer element for power converter circuits. In one embodiment, an energy transfer element according to an embodiment of the present invention includes a magnetic element having an external surface with at least a first winding and a second winding wound around the external surface of the magnetic element without a bobbin. As such, energy to be received from a power converter circuit input is to be transferred from the first winding to the second winding through a magnetic coupling provided by the magnetic element to a power converter circuit output.
摘要:
A time-differential analog comparator includes a variable frequency signal source, a timing circuit, a counting circuit, and an evaluation circuit. The variable frequency signal source provides a repeating signal having a frequency corresponding to a value of an analog input. The timing circuit defines a timing sequence including a first time interval and a second time interval and generates a mode select signal at a time between the first time interval and the second time interval to stimulate a change in the analog input. The counting circuit is coupled to the timing circuit to count the periods of the repeating signal. The evaluation circuit coupled generates a decision signal in response to a count of the periods of the repeating signal indicated by the counting circuit. The first time interval is not equal to the second time interval to generate an offset in the decision signal.
摘要:
A controller that forces primary regulation is disclosed. An example controller includes a switched element to be coupled to a second winding of an energy transfer element of a power supply. A secondary control circuit is coupled to the switched element. The secondary control circuit is to be coupled across an output of the second winding to switch the switched element in response to a difference between an actual output value at the output of the second winding and a desired output value to force a current in a third winding of the energy transfer element that is representative of the difference between the actual output value at the output of the second winding and the desired output value. A primary switch is to be coupled to a first winding of the energy transfer element. A primary control circuit is coupled to the primary switch. The primary control circuit is to be coupled to receive the current forced in the third winding of the energy transfer element in response to the secondary control circuit. The primary control circuit is coupled to switch the primary switch to regulate an output of the power supply coupled to the output of the second winding in response to the forced current.
摘要:
A time-differential analog comparator is disclosed. An example apparatus according to aspects of the present invention includes a source of a variable frequency signal having a frequency responsive to an analog input. A counting circuit is coupled to count cycles of the variable frequency signal. The counting circuit is coupled to count in a first direction for a first time interval and is coupled to count in a second direction opposite to the first direction for a second time interval that occurs after an end of the first time interval. The counting circuit outputs a digital count signal and an evaluation circuit is coupled to generate a decision signal in response to the digital count signal after an end of the second time interval. The first time interval is not equal to the second time interval to generate an offset in the decision signal.
摘要:
An example apparatus to regulate an output voltage of a power converter at light/no load conditions includes a driver circuit, a feedback circuit, and an adjustable voltage reference circuit. The driver circuit is coupled to output a drive signal to switch a power switch between an ON state and an OFF state to regulate an output of the power converter. The feedback circuit is coupled to the driver circuit and is further coupled to output an enable signal to switch the power switch to an ON state in response to an output voltage signal. The adjustable voltage reference circuit is coupled to adjust a voltage reference such that a bias winding voltage of the power converter is adjusted nonlinearly in response to a load that is to be coupled to the output of the power converter.
摘要:
A flyback converter with forced primary regulation is disclosed. An example flyback converter includes a coupled inductor including a first winding, a second winding, and a third winding. The first winding is coupled to an input voltage and the second winding is coupled to an output of the power converter. A switched element is coupled to the second winding. A secondary control circuit is coupled to the switched element and the second winding. The secondary control circuit is coupled to switch the switched element in response to a difference between a desired output value and an actual output value to force a current in the third winding that is representative of the difference between the desired output value and the actual output value. A primary switch is coupled to the first winding. A primary control circuit is coupled to the primary switch and the third winding. The primary control circuit is coupled to switch the primary switch to regulate the output of the power converter in response to the forced current.
摘要:
Various techniques directed to providing temporary peak power from a switching regulator are disclosed. In one aspect, a switching regulator includes a switch that is to be coupled between a power supply input and an energy transfer element of the power supply. A controller is coupled to be responsive to a feedback signal to be received from an output of the power supply. The controller is coupled to switch the switch in response to the feedback signal to regulate the output of the power supply. An oscillator is coupled to provide an oscillating signal to the controller to determine a maximum switching frequency of the switch. The oscillating signal is coupled to oscillate at a first frequency under a first moderate load condition at the power supply output. The oscillating signal is coupled to oscillate at a second frequency under a second peak load condition at the power supply output.
摘要:
A reduced cost energy transfer element for power converter circuits. In one embodiment, an energy transfer element according to an embodiment of the present invention includes a magnetic element having an external surface with at least a first winding and a second winding wound around the external surface of the magnetic element without a bobbin. As such, energy to be received from a power converter circuit input is to be transferred from the first winding to the second winding through a magnetic coupling provided by the magnetic element to a power converter circuit output.
摘要:
A reduced cost energy transfer element for power converter circuits. In one embodiment, an energy transfer element according to an embodiment of the present invention includes a magnetic element having an external surface with at least a first winding and a second winding wound around the external surface of the magnetic element without a bobbin. As such, energy to be received from a power converter circuit input is to be transferred from the first winding to the second winding through a magnetic coupling provided by the magnetic element to a power converter circuit output.