Abstract:
A transflective type LCD device and a method for manufacturing the same is disclosed, in which an aperture ratio of a reflective part is improved, and manufacturing process is simplified by decreasing the number of masks for forming contact holes. The transflective type LCD device includes a plurality of gate and data lines crossing each other, defining a plurality of pixel regions; a thin film transistor at a crossing point of the gate and data lines; a lower storage electrode formed by one portion of a preceding gate line, and an upper storage electrode above the lower storage electrode having a gate insulating layer in between; a transmitting electrode in contact the upper storage electrode; and a reflective electrode in contact with the transmitting electrode in the reflective part of the pixel region wherein the transmitting electrode is in between the reflective electrode and the substrate.
Abstract:
An organic light emitting display device includes a substrate, a thin film transistor having a gate insulating layer and an inter-insulating layer, an organic light emitting diode electrically connected with the thin film transistor, and a photo sensor, wherein the gate insulating layer includes a relief structure positioned above the photo sensor.
Abstract:
Disclosed is a liquid crystal display (LCD) device having a protection member capable of enhancing reliability against an external impact, and an outdoor visibility against an external light. The LCD device comprises: an LC panel for displaying images; a backlight unit disposed below the LC panel, and providing light; a protection member provided on the LC panel, and consisting of a tempered substrate for protecting the LC panel from an external impact, and an anti-reflect layer formed on the tempered substrate and reducing a reflectivity of external light; and an adhesive layer formed of a material having a similar refractivity to the LC panel and the tempered substrate of the protection member, for adhering the protection member onto the LC panel by being interposed therebetween.
Abstract:
An array substrate for a liquid crystal display device includes: a substrate; a gate line on the substrate; a data line crossing the gate line to define a pixel region including a transmissive portion and a reflective portion, the data line being divided into first and second branch lines, the first and second branch lines being spaced apart from each other and disposed in the reflective portion of the adjacent pixel regions, respectively; a thin film transistor connected to the gate line and the data line; a reflective electrode corresponding to the reflective portion and covering the first and second branch lines; and a transparent electrode corresponding to the transmissive portion and connected to the reflective electrode.
Abstract:
A transflective type LCD device and a method for manufacturing the same is disclosed, in which an aperture ratio of a reflective part is improved, and manufacturing process is simplified by decreasing the number of masks for forming contact holes. The transflective type LCD device includes a plurality of gate and data lines crossing each other, defining a plurality of pixel regions; a thin film transistor at a crossing point of the gate and data lines; a lower storage electrode formed by one portion of a preceding gate line, and an upper storage-electrode above the lower storage electrode having a gate insulating layer in between; a transmitting electrode in contact the upper storage electrode; and a reflective electrode in contact with the transmitting electrode in the reflective part of the pixel region wherein the transmitting electrode is in between the reflective electrode and the substrate.
Abstract:
A reflective liquid crystal display device and a fabricating method thereof are disclosed in the present invention. The reflective liquid crystal display device includes a substrate having first and second pixel regions, a gate line on the substrate, a data line crossing the gate line and defining the pixel regions, a thin film transistor connected to the gate line and the data line, wherein the thin film transistor comprises a gate electrode, an active layer, and source and drain electrodes, first and second reflective electrodes over the thin film transistor, wherein the first and second reflective electrodes are separated from each other by a first gap, the first and second reflective electrodes are located at the first and second pixel regions, respectively, and completely cover the data line at the pixel regions, and a patterned spacer filling the first gap between the first and second electrodes.
Abstract:
A reflective liquid crystal display device and a fabricating method thereof are disclosed in the present invention. The liquid crystal display device includes first and second substrates spaced apart from each other, a gate line and a data line over an inner surface of the first substrate, the gate line and the data line crossing each other and defining a sub-pixel region, a thin film transistor connected to the gate line and the data line, a first passivation layer on the thin film transistor layer, the first passivation layer having a plurality of first uneven patterns in the sub-pixel region, a second passivation layer acting as a light-shielding layer on the first passivation layer, the second passivation layer having a plurality of second uneven patterns on the first uneven patterns, and a reflective layer on the second passivation layer, the reflective electrode having a plurality of third uneven patterns on the second uneven patterns.
Abstract:
Disclosed are a feedback circuit and a power supply device including the same. The power supply device converts input voltage into output voltage suitable for load condition according to a switching operation of a power switch. The feedback circuit includes a first diode connected to a first sensing voltage corresponding to output voltage and a second diode connected to the output voltage. The feedback circuit generates feedback voltage by using voltage passing through a conducted diode of the first and the second diodes. The power supply device controls a switching operation of the power switch depending on the feedback voltage.
Abstract:
A transflective type LCD device and a method for manufacturing the same is disclosed, in which an aperture ratio of a reflective part is improved, and manufacturing process is simplified by decreasing the number of masks for forming contact holes. The transflective type LCD device includes a plurality of gate and data lines crossing each other, defining a plurality of pixel regions; a thin film transistor at a crossing point of the gate and data lines; a lower storage electrode formed by one portion of a preceding gate line, and an upper storage electrode above the lower storage electrode having a gate insulating layer in between; a transmitting electrode in contact the upper storage electrode; and a reflective electrode in contact with the transmitting electrode in the reflective part of the pixel region wherein the transmitting electrode is in between the reflective electrode and the substrate.
Abstract:
A fabricating method of an array substrate for a transflective liquid crystal display device includes: forming a gate electrode and a gate line on the substrate; depositing a first insulating layer on the gate electrode and the gate line; forming an active layer on the first insulating layer over the gate electrode; forming an ohmic contact layer on the active layer; forming source and drain electrodes on the ohmic contact layer, and a data line connected to the source electrode, the data line defining a pixel region with the gate line; depositing a second insulating layer on the source and drain electrodes, and the data line, the second insulating layer having an inorganic material; forming a reflective plate on the second insulating layer at the pixel region, the reflective plate having a transmissive hole; forming a third insulating layer on the reflective plate; and forming a pixel electrode on the third insulating layer at the pixel region, the pixel electrode being transparent and connected to the drain electrode.