Abstract:
The present invention discloses a method and equipment for UCI transmission. Upon application of the technical solution provided in embodiments of the present invention, UE transmitting UCI through a selected PUSCH is realized when multiple PUSCH transmissions are available for a UE in one uplink subframe in LTE-A carrier aggregation system, which solves the problem on how to transmit UCI only through one PUSCH when multiple PUSCH transmissions are available.
Abstract:
Disclosed in embodiments of the present disclosure are a method for determining the length of feedback response information and a related product. The method comprises the following steps: a terminal receives configuration signaling sent by a network side device, the configuration signaling comprising: indicating the maximum transmission timing value of feedback response information; the terminal dynamically determines a hybrid automatic repeat request feedback time sequence; the terminal determines the total number of bits of a feedback response message to be transmitted according to the maximum transmission timing value; the terminal sends the feedback response message to be transmitted with the total number of bits to the network side device.
Abstract:
The embodiments of the present application relate to the technical field of wireless communications, and in particular, to a method, system and device for transmitting feedback information, used for realizing simultaneous feedback of multi-carrier ACK/NACK and periodical CSI. The method for sending feedback information in the embodiments of the present application includes: user equipment determining a PUCCH resource corresponding to first feedback information in second feedback information periodical reporting subframes; the user equipment determining feedback information to be transmitted and including the first feedback information according to the determined PUCCH resource and transmitting same via the PUCCH resource corresponding to the first feedback information. Since the user equipment determines feedback information including first feedback information according to the PUCCH resource corresponding to the first feedback information in the second feedback information periodical reporting subframes and transmits same via the determined PUCCH resource, thus realizing simultaneous feedback of multi-carrier ACK/NACK and periodical CSI.
Abstract:
The present invention disclosed a resource configuration method for uplink control channel, The method comprises: network side equipment determines downlink carrier that exists cell specific linkage in uplink carrier set and downlink carrier set of User Equipment UE; said network side equipment configures uplink control channel resource for downlink carrier which doesn't exist cell specific linkage according to said determinate result. The method of the present invention is simple and easy to implement, it could use the method in FDD and TDD system to advance system capability of Long Term Evolution multi-carrier update system, and advancing compatibility with the present LTE system primely.
Abstract:
The present invention discloses a method and equipment for UCI transmission. Upon application of the technical solution provided in embodiments of the present invention, UE transmitting UCI through a selected PUSCH is realized when multiple PUSCH transmissions are available for a UE in one uplink subframe in LTE-A carrier aggregation system, which solves the problem on how to transmit UCI only through one PUSCH when multiple PUSCH transmissions are available.
Abstract:
The present invention relates to the technical field of wireless communication, particularly relates to a method, system and apparatus for sending and receiving feedback information, to be used for transmitting the feedback information after the aggregation of carriers with different time division duplex (TDD) uplink and downlink configurations. The method of an embodiment of the present invention comprises: determining a dedicated feedback timing relationship by using a user equipment (UE) aggregating carriers with different TDD uplink/downlink configurations; the UE transmitting the feedback information corresponding to the downlink data on the primary carrier according to the determined dedicated feedback timing relationship. Because the feedback information can be transmitted after the aggregation of carriers with different TDD uplink and downlink configurations, thus the transmission efficiency and system performance after the aggregation of carriers with different TDD uplink and downlink configurations are improved.
Abstract:
Examples of the present disclosure provide an ACK/NACK/SR resource mapping method and an apparatus. According to the technical solution provided by the examples of the present disclosure, in a system including a terminal utilizing a first type protocol and a terminal utilizing a second type protocol, the base station allocates the ACK/NACK/SR resources corresponding to the second type protocol in an area outside of the ACK/NACK/SR resource area reserved for the terminal utilizing the first type protocol, and informs the terminal utilizing the second type protocol of the allocation information of the corresponding ACK/NACK/SR resources. Thus, the terminal utilizing the second type protocol may transmit feedback information via the corresponding ACK/NACK/SR resources.
Abstract:
Disclosed are a method and an apparatus for uplink control channel resource configuration. A base station allocates an uplink control channel resource set, and the resource set includes channel resource elements which can be used by acknowledgement/negative acknowledgement ACK/NACK feedback. The base station sends a configuration signaling to a user terminal according to the channel resource elements circumstances included in the uplink control channel resource set and/or that if the uplink control channel resources to be fed back corresponding to a downlink subframe control district Control Channel Element CCE can satisfy all of the antenna ports to process transmission diversity. The user terminal configured with two antenna ports uses the corresponding channel resources to process ACK/NACK feedback according to the configuration signaling. Applying the method, apparatus and system provided by the present invention can solve the problems that the limited feedback channel resources affect the flexibility of Physical Downlink Shared Channel PDCCH scheduling and the complexity of blind tests the user terminal processes for PDCCH.
Abstract:
Disclosed are a data transmission method and device in a carrier aggregation system, used for realizing the data transmission of UE which does not support uplink and downlink transmission simultaneously in a carrier aggregation system which uses different TDD uplink and downlink configurations. The data transmission method in a carrier aggregation system provided in the present application includes: an eNB performing data transmission with specific user equipment (UE) according to the time division duplex (TDD) uplink and downlink sub-frame configuration employed by a specific component carrier in a carrier aggregation system by means of a component carrier in the carrier aggregation system, wherein said specific UE is TDDUE which does not support simultaneously performing uplink data transmission and downlink data transmission in an identical sub-frame.
Abstract:
The present invention relates to the technical field of wireless communication, particularly relates to a method, system and apparatus for sending and receiving feedback information, to be used for transmitting the feedback information after the aggregation of carriers with different time division duplex (TDD) uplink and downlink configurations. The method of an embodiment of the present invention comprises: determining a dedicated feedback timing relationship by using a user equipment (UE) aggregating carriers with different TDD uplink/downlink configurations; the UE transmitting the feedback information corresponding to the downlink data on the primary carrier according to the determined dedicated feedback timing relationship. Because the feedback information can be transmitted after the aggregation of carriers with different TDD uplink and downlink configurations, thus the transmission efficiency and system performance after the aggregation of carriers with different TDD uplink and downlink configurations are improved.