Abstract:
A connector is disclosed that includes a housing and first and second attachment areas located in the housing and spaced apart from each other along the mating direction of the connector. The second, but not the first, attachment area is designed to move relative to the housing. The connector further includes an optical waveguide that is permanently attached to, and under a first bending force between, the first and second attachment areas. The connector also includes a light coupling unit located in the housing for receiving light from the optical waveguide and transmitting the received light to a mating connector along a direction different than the mating direction of the connector. The mating of the connector to the mating connector causes the optical waveguide to be under a greater second bending force between the first and second attachment areas.
Abstract:
A connector is disclosed that includes a light coupling unit designed to receive light from an input side of the light coupling unit and transmit the received light to a mating connector from an output side of the light coupling unit along a direction different than the mating direction of the connector. The light coupling unit rotates when the connector mates with the mating connector.
Abstract:
The disclosure generally relates to sets of optical waveguides such as optical fiber ribbons and embedded optical waveguides, and optical interconnects useful for connecting multiple optical waveguides such as in optical fiber ribbon cables and printed circuit boards (PCBs) having optoelectronic capabilities. In particular, the disclosure provides an efficient, compact, and reliable optical waveguide connector that incorporates microlenses and re-directing elements which combine the features of optical waveguide alignment, along with redirecting and shaping of the optical beam.
Abstract:
The disclosure generally relates to sets of optical waveguides such as optical fiber ribbons, and fiber optic connectors useful for connecting multiple optical fibers such as in optical fiber ribbon cables. In particular, the disclosure provides an efficient, compact, and reliable optical fiber connector that incorporates a unitary substrate combining the features of optical fiber alignment and redirection of the optical beam to a connected optical fiber.
Abstract:
The disclosure generally relates to sets of optical waveguides such as optical fiber ribbons, and fiber optic connectors useful for connecting multiple optical fibers such as in optical fiber ribbon cables. In particular, the disclosure provides an efficient, compact, and reliable optical fiber connector that incorporates an optically transmissive substrate combining the features of optical fiber alignment, along with redirecting and shaping of the optical beam.