Abstract:
A multilayer optical film has a packet of microlayers that selectively reflect light by constructive or destructive interference to provide a first reflective characteristic. At least some of the microlayers are birefringent. A stabilizing layer attaches to and covers the microlayer packet proximate an outer exposed surface of the film. Heating element(s) can physically contact the film to deliver heat to the packet through the stabilizing layer by thermal conduction, at altered region(s) of the film, such that the first reflective characteristic changes to an altered reflective characteristic in the altered region(s) to pattern the film. The stabilizing layer provides sufficient heat conduction to allow heat from the heating elements to change (e.g. reduce) the birefringence of the birefringent microlayers disposed near the outer exposed surface in the altered region(s), while providing sufficient mechanical support to avoid substantial layer distortion of the microlayers near the outer exposed surface in the altered region(s).
Abstract:
A multilayer optical film (130) has a packet of microlayers that selectively reflect light by constructive or destructive interference to provide a first reflective characteristic. At least some of the microlayers are birefringent. A stabilizing layer attaches to and covers the microlayer packet proximate an outer exposed surface of the film Heating elements (122) can physically contact the film to deliver heat to the packet through the stabilizing layer by thermal conduction, at altered regions of the film, such that the first reflective characteristic changes to an altered reflective characteristic in the altered regions to pattern the film The stabilizing layer provides sufficient heat conduction to allow heat from the heating elements to change (e.g. reduce) the birefringence of the birefringent microlayers disposed near the outer exposed surface in the altered regions, while providing sufficient mechanical support to avoid substantial layer distortion of the microlayers near the outer exposed surface in the altered regions.
Abstract:
A system for on-product projection and display of electronic content. The system includes a projector for projecting electronic content, a mirror film stack having a reflective surface facing the projector, and a product having an exterior surface facing the reflective surface of the mirror film stack. A graphic is located on a surface of the mirror film stack opposite the reflective surface. The electronic content from the projector is projected onto the exterior surface of the product via the reflective surface of the mirror film stack. The graphic can be located on a display window and hide the mirror from a viewer without completely blocking a view of the projected electronic content. The product can include a removable projection screen for displaying the electronic content, and the projection screen can include a removable label on its non-viewer side to advertise or promote the product.
Abstract:
A backlight that includes a front reflector and a back reflector that form a hollow light recycling cavity including an output surface is disclosed. The backlight further includes one or more light sources disposed to emit light into the light recycling cavity. The front reflector includes an on-axis average reflectivity of at least 90% for visible light polarized in a first plane, and an on-axis average reflectivity of at least 25% but less than 90% for visible light polarized in a second plane perpendicular to the first plane.
Abstract:
Various embodiments of a module or apparatus for characterization of surface quality of a surface of a substrate and a system that includes such apparatus are disclosed. The apparatus includes a sensor configured to detect at least one property of the surface of the substrate or ambient environment and provide a value indicative of the at least one property, and a processor coupled to the sensor. The processor is configured to determine at least one surface quality parameter of the surface based upon the value provided by the sensor, and determine at least one processing parameter for a surface bonding application based upon the at least one surface quality parameter.
Abstract:
Various embodiments of a hand tape applicator and system including such applicator are disclosed. The hand tape applicator includes a body, a spindle connected to the body that is configured to receive a tape roll that includes tape, and an ergonomic handle connected to the body. The applicator further includes a roller mechanism connected to the body that is configured to apply the tape to a substrate. The roller mechanism includes a head and a tape roller extending along a roller axis between a first end and a second end of the tape roller. The tape roller is connected to the head at each of the first and second ends. The applicator further includes a force sensor connected to the head. The force sensor is configured to detect a force between the tape roller and the head and provide a signal indicative of the force.
Abstract:
An optical stack including an oriented polymeric multilayer optical film and a non-birefringent optical filter is described. The oriented polymeric multilayer optical film has a first reflection band with a first band edge and the non-birefringent optical filter has a first blocking band. In some cases, the first blocking band contains the first band edge and the first blocking band provides a reduction in variation of a band edge of an overall blocking band of the optical stack.
Abstract:
A detector system is disclosed that includes a detector that is sensitive to wavelengths in a detection wavelength range. The detector system further includes a light control film that is disposed on the detector and includes a plurality of alternating first and second regions. Each first region has a width W and a height H, where H/W≥1. Each first region has a substantially low transmission in a first portion of the detection wavelength range and a substantially high transmission in the remaining portion of the detection wavelength range. Each second region has a substantially high transmission in the detection wavelength range.
Abstract:
An optical filter including a polarizer and a visible light blocking filter is described. The polarizer is configured to transmit at least 60 percent of light in a first infrared wavelength range that is incident on the polarizer at normal incidence in a first polarization state, to transmit less than 30 percent of light in a second infrared wavelength that is incident on the polarizer at normal incidence in a second polarization state orthogonal to the first polarization state, and to transmit less than 30 percent of light in a third infrared wavelength range that is incident on the polarizer with a 50 degree angle of incidence in the second polarization state. The visible light blocking filter configured to transmit at least 60 percent of light in the first infrared wavelength range at normal incidence in the first polarization state.
Abstract:
A multilayer optical film has a packet of microlayers that selectively reflect light by constructive or destructive interference to provide a first reflective characteristic. At least some of the microlayers are birefringent. A stabilizing layer attaches to and covers the microlayer packet proximate an outer exposed surface of the film. Heating element(s) can physically contact the film to deliver heat to the packet through the stabilizing layer by thermal conduction, at altered region(s) of the film, such that the first reflective characteristic changes to an altered reflective characteristic in the altered region(s) to pattern the film. The stabilizing layer provides sufficient heat conduction to allow heat from the heating elements to change (e.g. reduce) the birefringence of the birefringent microlayers disposed near the outer exposed surface in the altered region(s), while providing sufficient mechanical support to avoid substantial layer distortion of the microlayers near the outer exposed surface in the altered region(s).