Abstract:
Various techniques for temperature management during inductive energy transfer are disclosed. A transmitter device and/or a receiver device can be turned off during energy transfer based on the temperature of the transmitter device and/or of the receiver device.
Abstract:
A receiver device in a coupled coil system for wireless energy transfer includes a receiver coil and a load device operatively connected to the receiver coil and configured to receive a signal from the receiver coil. As one example, the load device is a rechargeable battery. An adjusting filter is included in the receiver device and is operatively connected between the receiver coil and the load device. The adjusting filter can be used to transform the effective resistance or impedance of the load as presented to the transformer during energy transfer so that the effective resistant or impedance of the load is maintained at a substantially constant level, and the signal received by the load device is maintained at a substantially constant level.
Abstract:
An inductive charging system can include a transmitter device and a receiver device. The transmitter device may be adapted to detect when a receiver coil in the receiver device is coupled to a transmitter coil in the transmitter device. For example, the current input into a DC-to-AC converter in the transmitter device can be measured and coil coupling detected when the current equals or exceeds a threshold value.
Abstract:
An inductive charging system can include a transmitter device and a receiver device. The transmitter device may be adapted to detect when a receiver coil in the receiver device is coupled to a transmitter coil in the transmitter device. For example, the current input into a DC-to-AC converter in the transmitter device can be measured and coil coupling detected when the current equals or exceeds a threshold value.
Abstract:
A wireless transmitter device is configurable and operable to transfer energy to multiple receiver devices at the same time. The transmitter device is configured to enable one or more sections of a charging surface to transfer energy by selectively choosing one or more conductive traces in the transmitter device based on the position of the receiver device on the charging surface. The size and shape of each section of the charging surface that is used to transfer energy to a receiver device can change dynamically based on each receiver device. Additionally, the process of transferring energy to each receiver device may be adjusted during energy transfer based on conditions specific to each receiver device.
Abstract:
A transmitter device for an inductive energy transfer system can include a DC-to-AC converter operably connected to a transmitter coil, a first capacitor connected between the transmitter coil and one output terminal of the DC-to-AC converter, and a second capacitor connected between the transmitter coil and another output terminal of the DC-to-AC converter. One or more capacitive shields can be positioned between the transmitter coil and an interface surface of the transmitter device. A receiver device can include a touch sensing device, an AC-to-DC converter operably connected to a receiver coil, a first capacitor connected between the receiver coil and one output terminal of the AC-to-DC converter, and a second capacitor connected between the receiver coil and another output terminal of the AC-to-DC converter. One or more capacitive shields can be positioned between the receiver coil and an interface surface of the receiver device.
Abstract:
A receiver device in a coupled coil system for wireless energy transfer includes a receiver coil and a load device operatively connected to the receiver coil and configured to receive a signal from the receiver coil. As one example, the load device is a rechargeable battery. An adjusting filter is included in the receiver device and is operatively connected between the receiver coil and the load device. The adjusting filter can be used to transform the effective resistance or impedance of the load as presented to the transformer during energy transfer so that the effective resistant or impedance of the load is maintained at a substantially constant level, and the signal received by the load device is maintained at a substantially constant level.
Abstract:
In an inductive energy transfer system, the phase of a signal that is applied to a transmitter coil to transfer energy is adjusted while energy is transferred from the transmitter device to a receiver device. The phase of the signal can be adjusted by changing a state of a DC-to-AC converter from a converting state to a non-converting state. The DC-to-AC converter outputs a signal that is applied to the transmitter coil when the DC-to-AC converter is in a converting state. A signal is not applied to the transmitter coil when the DC-to-AC converter is in a non-converting state.
Abstract:
A detachable headband for a headphone system can incorporate a headband identification circuit that stores or encodes a headband identification parameter value. When the headband becomes attached to an ear cup, the headband can transmit the headband identification parameter value to the ear cup.
Abstract:
A wireless charging mat and method of operating the same. The wireless charging mat includes a detection system configured to determine a location and an orientation of an electronic device on the wireless charging mat. The location and orientation are determined based on detected locations of one or more structural features of the electronic device. The wireless charging mat is operated according to the detected location and orientation.