Abstract:
A back-biased magnetic field sensor uses one or more magnetic field sensing elements upon a substrate, each outside of a substrate region in which magnetic field lines are near perpendicular to the substrate and outside of which magnetic field lines are not to the substrate. The back-biased magnetic field sensor can sense an approaching and/or a retreating ferromagnetic object.
Abstract:
An apparatus and a method provide an output signal indicative of a speed of rotation and/or a direction of movement of a ferromagnetic object having ferromagnetic features and capable of moving. A variety of signal formats of the output signal are described, each of which have pulses at a rate faster than the ferromagnetic features pass by the magnetic field sensor.
Abstract:
In an embodiment, a magnetic field sensor comprises a substrate and a first magnetoresistive element supported by the substrate. The magnetic field sensor also includes a second magnetoresistive element supported by the substrate and coupled in series with the first magnetoresistive element to form a voltage node between the first and second magnetoresistive elements, and at which an output voltage is provided that changes in response to an external magnetic field. The magnetic field sensor also includes a magnetic source that produces a local magnetic field having a strength sufficient to bias the first magnetoresistive element to a resistive value that is substantially resistant to changing in response to the external magnetic field. In embodiments, additional magnetoresistive elements are included to form an H-bridge circuit.
Abstract:
An apparatus and a method provide an output signal indicative of a speed of rotation and a direction of rotation of a ferromagnetic object capable of rotating. A variety of signal formats of the output signal are described.
Abstract:
An apparatus and a method provide an output signal indicative of a speed of rotation and a direction of rotation of a ferromagnetic object capable of rotating. A variety of signal formats of the output signal are described.
Abstract:
According to one aspect of the present disclosure, a voltage isolated integrated circuit (IC) package configuration includes a first package comprising a transformer and a mold material enclosing the transformer to form a first package body, wherein the first package comprises a first lead set to permit electrical connection to the transformer. In some embodiments, a second package comprising a lead frame, two or more semiconductor die supported by the lead frame, and a mold material enclosing the two or more semiconductor die to form a second package body, wherein the lead frame comprises a second lead set to permit electrical connection to the two or more semiconductor die. In some embodiments, the one or more leads of the first lead set is directly electrically connected to one or more leads of the second lead set, wherein the first package and the second package are mechanically coupled together.
Abstract:
A magnetic field sensor includes a lead frame, a semiconductor die, a conductive coil, a mandrel, and a non-conductive mold material. The lead frame has a first surface, a second opposing surface, at least one slot, and a plurality of leads. The semiconductor die has a first surface in which a magnetic field sensing element is disposed and a second opposing surface attached to the first surface of the lead frame. The conductive coil is secured to the second surface of the lead frame and configured to operate as a back bias magnet to provide a magnetic field used to detect movement of a target. The coil is would around the mandrel and the mandrel is comprised of a ferromagnetic material. The non-conductive mold material encloses the die, the conductive coil, the mandrel, and at least a portion of the lead frame.
Abstract:
Methods and apparatus for detecting a magnetic field include a semiconductor substrate, a coil configured to provide a changing magnetic field in response to a changing current in the coil; and a magnetic field sensing element supported by the substrate. The coil receives the changing current and, in response, generates a changing magnetic field. The magnetic field sensing element detects the presence of a magnetic target by detecting changes to the magnetic field caused by the target and comparing them to an expected value.
Abstract:
A system includes a ring magnet having magnetic segments and configured to rotate about an axis of rotation, wherein adjacent segments have different magnetic polarities, The system can further include a substrate positioned so that a top surface of the substrate is substantially parallel to the axis of rotation and a center plane passing through the ring magnet and perpendicular to the axis of rotation of the ring magnet intersects the top surface at an intersection line. The system can further include four magnetic field sensing elements supported by the substrate and electrically coupled to form a first bridge circuit, wherein two of the four magnetic field sensing elements are positioned on one side of the intersection line and the other two of the four magnetic field sensing elements are positioned on the other side of the intersection line.
Abstract:
A pressure sensor includes a conductive substrate having a cavity which forms a thin portion that can be deformed by a pressure differential. A magnetic field sensor has at least one coil responsive to a changing coil drive signal and positioned proximate to the thin portion of the substrate that induces eddy currents in the thin portion that generate a reflected magnetic field. Magnetic field sensing elements detect the reflected magnetic field and generate a magnetic field signal. The magnetic field sensor is positioned so that deformation of the thin portion of the substrate causes a distance between the thin portion of the substrate and the magnetic field sensor to change.