摘要:
The present invention relates generally to the field of molecular biology and concerns a method for enhancing various yield-related traits in plants by modulating expression in a plant of a nucleic acid encoding a TCP1 or a TCP2 transcription factor. The present invention also concerns plants having modulated expression of a nucleic acid encoding a TCP1 or TCP2 polypeptide, which plants have enhanced yield-related traits relative to corresponding wild type plants or other control plants. The invention also provides constructs useful in the methods of the invention. In another embodiment, the present invention relates generally to the field of molecular biology and concerns a method for enhancing various economically important yield-related traits in plants. More specifically, the present invention concerns a method for enhancing yield-related traits in plants by modulating expression in a plant of a nucleic acid encoding an Epsin-like polypeptide. The present invention also concerns plants having modulated expression of a nucleic acid encoding an Epsin-like polypeptide, which plants have enhanced yield-related traits relative to control plants. The invention also provides constructs comprising a nucleic acid encoding an Epsin-like polypeptide, useful in performing the methods of the invention. In yet another embodiment, the present invention relates generally to the field of molecular biology and concerns a method for increasing various plant yield-related traits by increasing expression in the seeds of a plant, of a nucleic acid sequence encoding a tRNA delta(2)-isopentenylpyrophosphate transferase (IPPT) polypeptide. The present invention also concerns plants having increased expression in the seeds, of a nucleic acid sequence encoding an IPPT polypeptide, which plants have increased yield-related traits relative to control plants. The invention additionally relates to nucleic acid constructs, vectors and plants containing said nucleic acid sequences. In further embodiment, the present invention relates generally to the field of molecular biology and concerns a method for enhancing yield-related traits in plants grown under conditions of sub-optimal nutrient availability, comprising modulating expression in a plant of a nucleic acid encoding a SHORT-ROOT (SHR) polypeptide. The present invention also provides a method for increasing Thousand Kernel Weight (TKW) in plants relative to control plants, comprising modulating expression of a nucleic acid encoding an SHR polypeptide in a plant grown under grown under non-nutrient limiting conditions. The present invention also concerns plants having modulated expression of a nucleic acid encoding an SHR polypeptide, which plants have enhanced yield-related traits relative to corresponding wild type plants or other control plants. The invention also provides constructs useful in the methods of the invention.
摘要:
The present invention relates generally to the field of molecular biology and concerns a method for enhancing yield-related traits in plants by modulating expression in a plant of a nucleic acid encoding an importin or a yield-related polypeptide. The present invention also concerns plants having modulated expression of a nucleic acid encoding an importin or a yield-related polypeptide, which plants have enhanced yield-related traits relative to corresponding wild type plants or other control plants. The invention also provides constructs useful in the methods of the invention.
摘要:
The present invention relates generally to the field of molecular biology and concerns a method for enhancing various economically important yield-related traits in plants. More specifically, the present invention concerns a method for enhancing yield-related traits in plants by modulating expression in a plant of a nucleic acid encoding a Yield Enhancing Protein (YEP). The YEP is selected from a Vacuolar Processing Enzyme (VPE) or a CCA1-like polypeptide or a SAP-like polypeptide or a Seed Yield Promoting Factor 1 (SYPF1) polypeptide or a Ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) activase (RCA) polypeptide. The present invention also concerns plants having modulated expression of a nucleic acid encoding such a YEP, which plants have enhanced yield-related traits relative to control plants. The invention also provides hitherto unknown YEP-encoding nucleic acids, and constructs comprising the same, useful in performing the methods of the invention.
摘要:
Provided is a method for enhancing yield-related traits in plants by modulating expression of a nucleic acid encoding a bZIP-like polypeptide or a BCAT4-like polypeptide in a plant. Also provided are plants having modulated expression of a nucleic acid encoding a bZIP-like polypeptide or a BCAT4-like polypeptide, which plants have enhanced yield-related traits compared with control plants. Also provided are constructs comprising bZIP-like polypeptide-encoding nucleic acids or BCAT4-like polypeptide-encoding nucleic acids, useful in enhancing yield-related traits in plants.
摘要:
The present invention relates generally to the field of molecular biology and concerns a method for enhancing various economically important yield-related traits in plants. More specifically, the present invention concerns a method for enhancing yield-related traits in plants by modulating expression in a plant of a nucleic acid encoding a WI12-like (WIL) polypeptide or a SAWADEE-like polypeptide or a POZ-like (Pox virus and Zn Finger) polypeptide. The present invention also concerns plants having modulated expression of a nucleic acid encoding a WIL polypeptide or a SAWADEE-like polypeptide or a POZ-like polypeptide, which have enhanced yield-related traits relative to control plants. The invention also provides hitherto unknown WIL-encoding nucleic acids, and constructs comprising the same, and hitherto unknown POZ-like encoding nucleic acids, and constructs comprising the same, useful in performing the methods of the invention.
摘要:
The invention concerns a method for improving growth characteristics of plants by increasing activity in a plant of an RNA-binding protein, which is: (i) a polypeptide having RNA-binding activity and comprising 2 or 3 RNA recognition motifs (RRMs) and a motif having at least 75% identity to motif I: PYEAAVVALPVVVKERLVRILRLGIATRYD (SEQ ID NO: 12) and/or a motif having at least 50% identity to motif II: RFDPFTGEPYKFDP (SEQ ID NO: 13); or (ii) an RBP1 polypeptide having (a) RNA-binding activity; (b) two RRM domains, (c) the following two motifs: (i) KIFVGGL (SEQ ID NO: 41); and (ii) RPRGFGF (SEQ ID NO: 42), allowing for up to three amino acid substitutions and any conservative change in the motifs; and (d) having at least 20% identity to SEQ ID NO: 15. Also provided is transgenic plants introduced with an RNA-binding protein-encoding nucleic acid having improved growth characteristics and constructs useful in the methods.
摘要翻译:本发明涉及通过增加植物中的RNA结合蛋白的活性来提高植物的生长特性的方法,其是:(i)具有RNA结合活性并包含2或3个RNA识别基序(RRM)的多肽和 基序与基序I具有至少75%的同一性:PYEAAVVALPVVKERLVRILRLGIATRYD(SEQ ID NO:12)和/或与基序II具有至少50%同一性的基序:RFDPFTGEPYKFDP(SEQ ID NO:13); 或(ii)具有(a)RNA结合活性的RBP1多肽; (b)两个RRM结构域,(c)以下两个基序:(i)KIFVGGL(SEQ ID NO:41); 和(ii)RPRGFGF(SEQ ID NO:42),允许多达3个氨基酸取代和图案中任何保守的变化; 和(d)与SEQ ID NO:15具有至少20%的同一性。还提供了引入具有改善的生长特性的RNA结合蛋白质编码核酸的转基因植物和在该方法中有用的构建体。
摘要:
The present invention concerns a method for improving growth characteristics of plants by increasing expression and/or activity in a plant of an LRR receptor kinase or a homologue thereof. One such method comprises introducing into a plant an RLK827 nucleic acid molecule or functional variant thereof. The invention also relates to transgenic plants having improved growth characteristics, which plants have modulated expression of a nucleic acid encoding an LRR receptor kinase. The present invention also concerns constructs useful in the methods of the invention.
摘要:
The present invention relates generally to the field of molecular biology and concerns a method for enhancing various economically important yield-related traits in plants. More specifically, the present invention concerns a method for enhancing various economically important yield-related traits in plants relative to control plants, by increasing expression in a plant of a nucleic acid sequence encoding a Yield-Enhancing Polypeptide (YEP). The YEP may be a Class I TCP or a CAH3 or a Clayata 1 (CLV1) polypeptide with a non-functional C-terminal domain. The present invention also concerns plants having increased expression of a nucleic acid sequence encoding a YEP, which plants have enhanced yield-related traits in plants relative to control plants. The invention also provides constructs useful in the methods of the invention.
摘要:
The present invention relates generally to the field of molecular biology and concerns a method for enhancing yield-related traits in plants by modulating expression in a plant of a nucleic acid encoding an importin or a yield-related polypeptide. The present invention also concerns plants having modulated expression of a nucleic acid encoding an importin or a yield-related polypeptide, which plants have enhanced yield-related traits relative to corresponding wild type plants or other control plants. The invention also provides constructs useful in the methods of the invention.
摘要:
A method for producing a plant with increased yield as compared to a corresponding wild type plant whereby the method comprises at least the following step: increasing or generating in a plant or a part thereof one or more activities of a polypeptide selected from the group consisting of 2-oxoglutarate-dependent dioxygenase, 3-ketoacyl-CoA thiolase, 3′-phosphoadenosine 5′-phosphate phosphatase, 4-diphosphocytidyl-2-C-methyl-D-erythritol kinase, 5OS chloroplast ribosomal protein L21, 57972199. R01.1-protein, 60952769. R01.1-protein, 60S ribosomal protein, ABC transporter family protein, AP2 domain-containing transcription factor, argonaute protein, AT1 G29250.1-protein, AT1 G53885-protein, AT2G35300-protein, AT3G04620-protein, AT4G01870-protein, AT5G42380-protein, AT5G47440-protein, CDS5394-protein, CDS5401_TRUNCATED-protein, cold response protein, cullin, Cytochrome P450, delta-8 sphingolipid desaturase, galactinol synthase, glutathione-S-transferase, GTPase, haspin-related protein, heat shock protein, heat shock transcription factor, histone H2B, jasmonate-zim-domain protein, mitochondrial asparaginyl-tRNA synthetase, Oligosaccharyltransferase, OS02G44730-protein, Oxygen-evolving enhancer protein, peptidyl-prolyl cis-trans isomerase, peptidyl-prolyl cis-trans isomerase family protein, plastid lipid-associated protein, Polypyrimidine tract binding protein, PRLI-interacting factor, protein kinase, protein kinase family protein, rubisco subunit binding-protein beta subunit, serine acetyltransferase, serine hydroxymethyltransferase, small heat shock protein, S-ribosylhomocysteinase, sugar transporter, Thioredoxin H-type, ubiquitin-conjugating enzyme, ubiquitin-protein ligase, universal stress protein family protein, and Vacuolar protein.