Abstract:
Disclosed are methods and systems for using an impact-activated device for repelling sharks from marine geophysical survey equipment. An embodiment discloses a marine geophysical survey system, comprising: marine geophysical survey equipment configured to be located in a body of water when in operation; and an impact-activated device coupled to the marine geophysical equipment, wherein the impact-activated device comprises a circuit configured to release a shark repellent in response to a pre-determined impact on the impact-activated device.
Abstract:
Retriever systems for marine geophysical survey sensor streamers. At least some of the illustrative embodiments are methods including attaching a retriever system to a sensor streamer by: wrapping a lifting bag assembly at least partially around the sensor streamer, the lifting bag assembly comprising a deflated lifting bag, a gas cylinder, and a depth trigger mechanism; and covering the lifting bag assembly with an outer cover.
Abstract:
A seismic streamer includes a jacket covering an exterior of the streamer. At least one strength member extends the length of the jacket. The strength member is formed as a substantially flat belt having a width to thickness ratio of at least 10. At least one sensor holder is coupled to the at least one strength member. The at least one sensor holder includes at least one arcuate opening for receiving the at least one strength member. The at least one arcuate opening is laterally displaced from a center of the at least one sensor holder such that when the at least one strength member is disposed therein the at least one strength member is substantially tube shaped and substantially coaxial with the jacket.
Abstract:
A system comprises marine geophysical equipment, adapted for towing through a body of water; and tightly fitting covers, attached to the marine seismic equipment, to fill-in indentations in the marine geophysical equipment, for gathering marine geophysical data. A method comprises marine geophysical equipment having tightly fitting covers, to fill-in indentations in the marine geophysical equipment, attached thereto, for gathering marine geophysical data.
Abstract:
Systems and methods comprise marine geophysical equipment with polyurethane-based material at least partially covering a surface. The surface also at least partially coated with a suspension medium and with a biocide. A method comprises disposing such marine geophysical equipment in a body of water. A method comprises applying a suspension medium and a biocide to a surface at least partially covered with a polyurethane-based material.
Abstract:
A system comprises towed marine seismic equipment marine seismic equipment, adapted for towing through a body of water; and a surface covering, with longitudinal ribs, attached to the marine seismic equipment to reduce drag. A method comprises towing marine seismic equipment having a surface covering, with longitudinal ribs, attached thereto to reduce drag.
Abstract:
A seismic streamer includes a jacket covering an exterior of the streamer. At least one strength member extends the length of the jacket. The strength member is formed as a substantially flat belt having a width to thickness ratio of at least 10. At least one sensor holder is coupled to the at least one strength member. The at least one sensor holder includes at least one arcuate opening for receiving the at least one strength member. The at least one arcuate opening is laterally displaced from a center of the at least one sensor holder such that when the at least one strength member is disposed therein the at least one strength member is substantially tube shaped and substantially coaxial with the jacket.
Abstract:
A seismic streamer includes a jacket covering an exterior of the streamer. At least one strength member extends along the length of the streamer and is disposed inside the jacket. At least one seismic sensor is disposed in a sensor spacer affixed to the at least one strength member. An encapsulant is disposed between the sensor and the sensor spacer. The encapsulant is a substantially solid material that is soluble upon contact with a void filling material. A void filling material is disposed in the interior of the jacket and fills substantially all void space therein. The void filling material is introduced to the interior of the jacket in liquid form and undergoing state change to substantially solid thereafter.
Abstract:
A seismic streamer includes a jacket and at least one seismic sensor disposed in a sensor holder inside the jacket. The at least one sensor is oriented inside the sensor holder such that a response of the at least one sensor is substantially longitudinally symmetric.
Abstract:
In one embodiment the invention comprises a particle velocity sensor that includes a housing with a geophone mounted in the housing. A fluid that substantially surrounds the geophone is included within the housing. The particle velocity sensor has an acoustic impedance within the range of about 750,000 Newton seconds per cubic meter (Ns/m3) to about 3,000,000 Newton seconds per cubic meter (Ns/m3). In another embodiment the invention comprises method of geophysical exploration in which a seismic signal is generated in a body of water and detected with a plurality of co-located particle velocity sensors and pressure gradient sensors positioned within a seismic cable. The output signal of either or both of the particle velocity sensors or the pressure gradient sensors is modified to substantially equalize the output signals from the particle velocity sensors and the pressure gradient sensors. The output signals from particle velocity sensors and pressure gradient sensors are then combined.
Abstract translation:在一个实施例中,本发明包括粒子速度传感器,其包括具有安装在壳体中的地震检波器的壳体。 基本上围绕地震检波器的流体包括在壳体内。 粒子速度传感器的声阻抗在每立方米约750,000牛顿秒(Ns / m 3)至约3,000,000牛顿秒/立方米(Ns / m 3 / SUP>)。 在另一个实施例中,本发明包括地球物理勘探方法,其中在水体中产生地震信号并且利用位于地震缆索内的多个共同定位的粒子速度传感器和压力梯度传感器进行检测。 粒子速度传感器或压力梯度传感器中的任一个或两者的输出信号被修改为基本上均衡来自粒子速度传感器和压力梯度传感器的输出信号。 然后组合来自粒子速度传感器和压力梯度传感器的输出信号。