Abstract:
A strain-responsive sensor incorporating a strain-sensitive element is disclosed. The strain-sensitive element includes a matched-pair of resistive structures disposed on opposite sides of a substrate. One resistive structure of the matched pair is coupled to a crossover, either a physical crossover or a soft crossover, such that current within the resistive structures of the matched pair flows in the same direction.
Abstract:
One or more strain sensors can be included in an electronic device. Each strain sensor includes a strain sensitive element and one or more strain signal lines connected directly to the strain sensitive element. The strain sensor(s) are used to detect a force that is applied to the electronic device, to a component in the electronic device, and/or to an input region or surface of the electronic device. A strain sensitive element is formed or processed to have a first gauge factor and the strain signal line(s) is formed or processed to have a different second gauge factor. Additionally or alternatively, a strain sensitive element is formed or processed to have a first conductance and the strain signal line(s) is formed or processed to have a different second conductance.
Abstract:
An optically transparent force sensor that may compensate for environmental effects, including, for example, variations in temperature of the device or the surroundings. In some examples, two force-sensitive layers are separated by a compliant layer. The relative electrical response of the two force-sensitive layers may be used to compute an estimate of the force of a touch that reduces the effect of variations in temperature. In some examples, piezoelectric films having anisotropic strain properties are used to reduce the effects of temperature.
Abstract:
An optically transparent force sensor, which may be used as input to an electronic device. The optically transparent force sensor may be configured to compensate for variations in temperature using two or more force-sensitive components that are formed from materials having different temperature- and strain-dependent responses.
Abstract:
An electronic device includes one or more transparent strain sensors configured to detect strain based on an amount of force applied to the electronic device, a component in the electronic device, and/or an input surface of the electronic device. The one or more transparent strain sensors may be included in or positioned below an input surface that is configured to receive touch inputs from a user. The area below the input surface can be visible to a user when the user is viewing the input surface. The one or more transparent strain sensors are formed with a nanostructure, including a nanomesh or nanowires.
Abstract:
An optically transparent force sensor that may compensate for environmental effects, including, for example, variations in temperature of the device or the surroundings. In some examples, two force-sensitive layers are separated by a compliant layer. The relative electrical response of the two force-sensitive layers may be used to compute an estimate of the force of a touch that reduces the effect of variations in temperature. In some examples, piezoelectric films having anisotropic strain properties are used to reduce the effects of temperature.
Abstract:
A light system that may project virtual content onto surfaces of a room. The system may include one or more low-resolution light-emitting diode (LED) projectors for emitting light representing low-resolution virtual content, and a high-resolution LED projector for emitting light representing high-resolution virtual content. The high-resolution projector may be used to project a 2D image of augmented or virtual reality content being viewed by a person in a room using a device such as a headset or glasses onto a surface of the room so that other persons in the room can view a representation of what the person using the device is seeing. The low-resolution projector(s) may project low-resolution images onto other surfaces in the room, for example the walls and ceiling. The system may also be configured to emit diffuse light to illuminate a room when not emitting light representing virtual content.
Abstract:
A head-mounted device may have lenses. A user may view images through the lenses from eye boxes. The lenses may be tunable liquid lenses. Each lens may have a lens chamber. The lens chamber of the lens may have rigid and/or flexible walls that form optical lens surfaces. Actuators and/or pump and reservoir systems may deform the lens surfaces in response to control signals from a control circuit to tune the lens. Each liquid lens may have oil or other liquid in the lens chamber for that lens. Inorganic dielectric particles or other refractive-index-adjustment particles may be used to adjust the refractive index of the lens. The particles may be subwavelength in size.
Abstract:
Display panel redundancy schemes and methods of operation are described. In an embodiment, and display panel includes an array of drivers (e.g. microdrivers), each of which including multiple portions to independently receive control and pixel bits. In an embodiment, each driver portion is to control a group of redundant emission elements.
Abstract:
A head-mounted device may include one or more adjustable lens elements. The adjustable lens element may include a transparent substrate, a collapsible wall that forms an enclosed perimeter on the transparent substrate, and a flexible membrane on the collapsible wall that together define an interior volume. The interior volume may be filled with a fluid. The adjustable lens element may include a lens shaping component that applies a force to the collapsible wall to adjust a height of the collapsible wall relative to the transparent substrate, which in turn may be used to adjust the shape of the flexible membrane and thus the lens power of the lens element. The collapsible wall may have bellows that allow the collapsible wall to fold on itself when compressed, thereby minimizing unintended lateral movement of the collapsible wall.