Abstract:
Adaptive controller apparatus of a plant may be implemented. The controller may comprise an encoder block and a control block. The encoder may utilize basis function kernel expansion technique to encode an arbitrary combination of inputs into spike output. The controller may comprise spiking neuron network operable according to reinforcement learning process. The network may receive the encoder output via a plurality of plastic connections. The process may be configured to adaptively modify connection weights in order to maximize process performance, associated with a target outcome. The relevant features of the input may be identified and used for enabling the controlled plant to achieve the target outcome. The stochasticity of the learning process may be modulated. Stochasticity may be increased during initial stage of learning in order to encourage exploration. During subsequent controller operation, stochasticity may be reduced to reduce energy use by the controller.
Abstract:
Apparatus and methods for a modular robotic device with artificial intelligence that is receptive to training controls. In one implementation, modular robotic device architecture may be used to provide all or most high cost components in an autonomy module that is separate from the robotic body. The autonomy module may comprise controller, power, actuators that may be connected to controllable elements of the robotic body. The controller may position limbs of the toy in a target position. A user may utilize haptic training approach in order to enable the robotic toy to perform target action(s). Modular configuration of the disclosure enables users to replace one toy body (e.g., the bear) with another (e.g., a giraffe) while using hardware provided by the autonomy module. Modular architecture may enable users to purchase a single AM for use with multiple robotic bodies, thereby reducing the overall cost of ownership.
Abstract:
A robot may be trained by a user guiding the robot along target trajectory using a control signal. A robot may comprise an adaptive controller. The controller may be configured to generate control commands based on the user guidance, sensory input and a performance measure. A user may interface to the robot via an adaptively configured remote controller. The remote controller may comprise a mobile device, configured by the user in accordance with phenotype and/or operational configuration of the robot. The remote controller may detect changes in the robot phenotype and/or operational configuration. The remote controller may comprise multiple control elements configured to activate respective portions of the robot platform. Based on training, the remote controller may configure composite controls configured based two or more of control elements. Activation of a composite control may enable the robot to perform a task.
Abstract:
An optical object detection apparatus and associated methods. The apparatus may comprise a lens (e.g., fixed-focal length wide aperture lens) and an image sensor. The fixed focal length of the lens may correspond to a depth of field area in front of the lens. When an object enters the depth of field area (e.g., sue to a relative motion between the object and the lens) the object representation on the image sensor plane may be in-focus. Objects outside the depth of field area may be out of focus. In-focus representations of objects may be characterized by a greater contrast parameter compared to out of focus representations. One or more images provided by the detection apparatus may be analyzed in order to determine useful information (e.g., an image contrast parameter) of a given image. Based on the image contrast meeting one or more criteria, a detection indication may be produced.
Abstract:
Data streams from multiple image sensors may be combined in order to form, for example, an interleaved video stream, which can be used to determine distance to an object. The video stream may be encoded using a motion estimation encoder. Output of the video encoder may be processed (e.g., parsed) in order to extract motion information present in the encoded video. The motion information may be utilized in order to determine a depth of visual scene, such as by using binocular disparity between two or more images by an adaptive controller in order to detect one or more objects salient to a given task. In one variant, depth information is utilized during control and operation of mobile robotic devices.
Abstract:
Data streams from multiple image sensors may be combined in order to form, for example, an interleaved video stream, which can be used to determine distance to an object. The video stream may be encoded using a motion estimation encoder. Output of the video encoder may be processed (e.g., parsed) in order to extract motion information present in the encoded video. The motion information may be utilized in order to determine a depth of visual scene, such as by using binocular disparity between two or more images by an adaptive controller in order to detect one or more objects salient to a given task. In one variant, depth information is utilized during control and operation of mobile robotic devices.
Abstract:
Apparatus and methods for a modular robotic device with artificial intelligence that is receptive to training controls. In one implementation, modular robotic device architecture may be used to provide all or most high cost components in an autonomy module that is separate from the robotic body. The autonomy module may comprise controller, power, actuators that may be connected to controllable elements of the robotic body. The controller may position limbs of the toy in a target position. A user may utilize haptic training approach in order to enable the robotic toy to perform target action(s). Modular configuration of the disclosure enables users to replace one toy body (e.g., the bear) with another (e.g., a giraffe) while using hardware provided by the autonomy module. Modular architecture may enable users to purchase a single AM for use with multiple robotic bodies, thereby reducing the overall cost of ownership.
Abstract:
Data streams from multiple image sensors may be combined in order to form, for example, an interleaved video stream, which can be used to determine distance to an object. The video stream may be encoded using a motion estimation encoder. Output of the video encoder may be processed (e.g., parsed) in order to extract motion information present in the encoded video. The motion information may be utilized in order to determine a depth of visual scene, such as by using binocular disparity between two or more images by an adaptive controller in order to detect one or more objects salient to a given task. In one variant, depth information is utilized during control and operation of mobile robotic devices.
Abstract:
A robot may be trained by a user guiding the robot along target trajectory using a control signal. A robot may comprise an adaptive controller. The controller may be configured to generate control commands based on the user guidance, sensory input and a performance measure. A user may interface to the robot via an adaptively configured remote controller. The remote controller may comprise a mobile device, configured by the user in accordance with phenotype and/or operational configuration of the robot. The remote controller may detect changes in the robot phenotype and/or operational configuration. The remote controller may comprise multiple control elements configured to activate respective portions of the robot platform. Based on training, the remote controller may configure composite controls configured based two or more of control elements. Activation of a composite control may enable the robot to perform a task.
Abstract:
A random k-nearest neighbors (RKNN) approach may be used for regression/classification model wherein the input includes the k closest training examples in the feature space. The RKNN process may utilize video images as input in order to predict motor command for controlling navigation of a robot. In some implementations of robotic vision based navigation, the input space may be highly dimensional and highly redundant. When visual inputs are augmented with data of another modality that is characterized by fewer dimensions (e.g., audio), the visual data may overwhelm lower-dimension data. The RKNN process may partition available data into subsets comprising a given number of samples from the lower-dimension data. Outputs associated with individual subsets may be combined (e.g., averaged). Selection of number of neighbors, subset size and/or number of subsets may be used to trade-off between speed and accuracy of the prediction.