摘要:
A data processing apparatus may utilize an artificial neuron network configured to reduce dimensionality of input data using a sparse transformation configured using receptive field structure of network units. Output of the network may be analyzed for temporally persistency that is characterized by similarity matrix. Elements of the matrix may be incremented when present activity unit activity at a preceding frame. The similarity matrix may be partitioned based on a distance measure for a given element of the matrix and its closest neighbors. Stability of learning of temporally proximal patterns may be greatly improved as the similarity matrix is learned independently of the partitioning operation. Partitioning of the similarity matrix using the methodology of the disclosure may be performed online, e.g., contemporaneously with the encoding and/or similarity matrix construction, thereby enabling learning of new features in the input data.
摘要:
Apparatus and methods for detecting and utilizing saliency in digital images. In one implementation, salient objects may be detected based on analysis of pixel characteristics. Least frequently occurring pixel values may be deemed as salient. Pixel values in an image may be compared to a reference. Color distance may be determined based on a difference between reference color and pixel color. Individual image channels may be scaled when determining saliency in a multi-channel image. Areas of high saliency may be analyzed to determine object position, shape, and/or color. Multiple saliency maps may be additively or multiplicative combined in order to improve detection performance (e.g., reduce number of false positives). Methodologies described herein may enable robust tracking of objects utilizing fewer determination resources. Efficient implementation of the methods described below may allow them to be used for example on board a robot (or autonomous vehicle) or a mobile determining platform.
摘要:
A data processing apparatus may utilize an artificial neuron network configured to reduce dimensionality of input data using a sparse transformation configured using receptive field structure of network units. Output of the network may be analyzed for temporally persistency that is characterized by similarity matrix. Elements of the matrix may be incremented when present activity unit activity at a preceding frame. The similarity matrix may be partitioned based on a distance measure for a given element of the matrix and its closest neighbors. Stability of learning of temporally proximal patterns may be greatly improved as the similarity matrix is learned independently of the partitioning operation. Partitioning of the similarity matrix using the methodology of the disclosure may be performed online, e.g., contemporaneously with the encoding and/or similarity matrix construction, thereby enabling learning of new features in the input data.
摘要:
Apparatus and methods for detecting and utilizing saliency in digital images. In one implementation, salient objects may be detected based on analysis of pixel characteristics. Least frequently occurring pixel values may be deemed as salient. Pixel values in an image may be compared to a reference. Color distance may be determined based on a difference between reference color and pixel color. Individual image channels may be scaled when determining saliency in a multi-channel image. Areas of high saliency may be analyzed to determine object position, shape, and/or color. Multiple saliency maps may be additively or multiplicative combined in order to improve detection performance (e.g., reduce number of false positives). Methodologies described herein may enable robust tracking of objects utilizing fewer determination resources. Efficient implementation of the methods described below may allow them to be used for example on board a robot (or autonomous vehicle) or a mobile determining platform.
摘要:
Apparatus and methods for detecting and utilizing saliency in digital images. In one implementation, salient objects may be detected based on analysis of pixel characteristics. Least frequently occurring pixel values may be deemed as salient. Pixel values in an image may be compared to a reference. Color distance may be determined based on a difference between reference color and pixel color. Individual image channels may be scaled when determining saliency in a multi-channel image. Areas of high saliency may be analyzed to determine object position, shape, and/or color. Multiple saliency maps may be additively or multiplicative combined in order to improve detection performance (e.g., reduce number of false positives). Methodologies described herein may enable robust tracking of objects utilizing fewer determination resources. Efficient implementation of the methods described below may allow them to be used for example on board a robot (or autonomous vehicle) or a mobile determining platform.
摘要:
A data processing apparatus may utilize an artificial neuron network configured to reduce dimensionality of input data using a sparse transformation configured using receptive field structure of network units. Output of the network may be analyzed for temporally persistency that is characterized by similarity matrix. Elements of the matrix may be incremented when present activity unit activity at a preceding frame. The similarity matrix may be partitioned based on a distance measure for a given element of the matrix and its closest neighbors. Stability of learning of temporally proximal patterns may be greatly improved as the similarity matrix is learned independently of the partitioning operation. Partitioning of the similarity matrix using the methodology of the disclosure may be performed online, e.g., contemporaneously with the encoding and/or similarity matrix construction, thereby enabling learning of new features in the input data.
摘要:
An optical object detection apparatus and associated methods. The apparatus may comprise a lens (e.g., fixed-focal length wide aperture lens) and an image sensor. The fixed focal length of the lens may correspond to a depth of field area in front of the lens. When an object enters the depth of field area (e.g., sue to a relative motion between the object and the lens) the object representation on the image sensor plane may be in-focus. Objects outside the depth of field area may be out of focus. In-focus representations of objects may be characterized by a greater contrast parameter compared to out of focus representations. One or more images provided by the detection apparatus may be analyzed in order to determine useful information (e.g., an image contrast parameter) of a given image. Based on the image contrast meeting one or more criteria, a detection indication may be produced.
摘要:
Systems and methods for automatic detection of spills are disclosed. In some exemplary implementations, a robot can have a spill detector comprising at least one optical imaging device configured to capture at least one image of a scene containing a spill while the robot moves between locations. The robot can process the at least one image by segmentation. Once the spill has been identified, the robot can then generate an alert indicative at least in part of a recognition of the spill.
摘要:
Apparatus and methods for plasticity in spiking neuron networks. In various implementations, the efficacy of one or more connections of the network may be adjusted based on a plasticity rule during network operation. The rule may comprise a connection depression portion and/or a potentiation portion. Statistical parameters of the adjusted efficacy of a population of connections may be determined. The statistical parameter(s) may be utilized to adapt the plasticity rule during network operation in order to obtain efficacy characterized by target statistics. Based on the statistical parameter exceeding a target value, the depression magnitude of the plasticity rule may be reduced. Based on a statistical parameter being below the target value, the depression magnitude of the plasticity rule may be increased. The use of adaptive modification of the plasticity rule may improve network convergence while alleviating a need for manual tuning of efficacy during network operation.
摘要:
Apparatus and methods for processing inputs by one or more neurons of a network. The neuron(s) may generate spikes based on receipt of multiple inputs. Latency of spike generation may be determined based on an input magnitude. Inputs may be scaled using for example a non-linear concave transform. Scaling may increase neuron sensitivity to lower magnitude inputs, thereby improving latency encoding of small amplitude inputs. The transformation function may be configured compatible with existing non-scaling neuron processes and used as a plug-in to existing neuron models. Use of input scaling may allow for an improved network operation and reduce task simulation time.